Change search
Refine search result
1 - 18 of 18
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Akbarnejad, Shahin
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Saffari Pour, Mohsen
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Jonsson, Lage
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Jönsson, Pär
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Significance of Fluid Bypassing Effect on Darcy and Non-Darcy Permeability Parameters of Ceramic Foam FiltersManuscript (preprint) (Other academic)
  • 2.
    Akbarnejad, Shahin
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Saffari Pour, Mohsen
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Jonsson, Lage Tord Ingemar
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Jönsson, Pӓr Göran
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Effect of Fluid Bypassing on the Experimentally Obtained Darcy and Non-Darcy Permeability Parameters of Ceramic Foam Filters2017In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 48, no 1, p. 197-207Article in journal (Refereed)
    Abstract [en]

    Ceramic foam filters (CFFs) are used to remove solid particles and inclusions from molten metal. In general, molten metal which is poured on the top of a CFF needs to reach a certain height to build the required pressure (metal head) to prime the filter. To estimate the required metal head, it is necessary to obtain permeability coefficients using permeametry experiments. It has been mentioned in the literature that to avoid fluid bypassing, during permeametry, samples need to be sealed. However, the effect of fluid bypassing on the experimentally obtained pressure gradients seems not to be explored. Therefore, in this research, the focus was on studying the effect of fluid bypassing on the experimentally obtained pressure gradients as well as the empirically obtained Darcy and non-Darcy permeability coefficients. Specifically, the aim of the research was to investigate the effect of fluid bypassing on the liquid permeability of 30, 50, and 80 pores per inch (PPI) commercial alumina CFFs. In addition, the experimental data were compared to the numerically modeled findings. Both studies showed that no sealing results in extremely poor estimates of the pressure gradients and Darcy and non-Darcy permeability coefficients for all studied filters. The average deviations between the pressure gradients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 57.2, 56.8, and 61.3 pct. The deviations between the Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples found to be 9, 20, and 31 pct. The deviations between the non-Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 59, 58, and 63 pct.

  • 3.
    Cuvila, Carlos Alberto
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Kantarelis, Efthymios
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Mellin, Pelle
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Saffaripour, M.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Hye, A.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Effect of zeolite on product yield and composition during pyrolysis of hydrothermally pretreated SpruceManuscript (preprint) (Other academic)
  • 4.
    Cuvila, Carlos Alberto
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Said, Mahir
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Kantarelis, Efthymios
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Saffaripour, M.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Effect of mild hydrothermal pretreatment on biomass pyrolysis characteristics and vapors: A Mass and Energy Balance PerspectiveManuscript (preprint) (Other academic)
  • 5.
    Ghadamgahi, Mersedeh
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration. Ovako Hofors AB, Hofors, Sweden .
    Ölund, P.
    Lugnet, A.
    Saffaripour, Mohsen
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
    Design optimization of flameless-oxyfuel soaking pit furnace using CFD technique2014In: Energy Procedia, 2014, Vol. 61, p. 611-614Conference paper (Refereed)
    Abstract [en]

    The effect of the combustion chamber’s configuration on the characteristics of flow and combustion parameters has been numerically investigated for a multi injecting, LPG, Flameless Oxy-fuel burner in a real-size soaking pit furnace, using CFD simulation. The simulation has been performed on two different furnace configurations, namely; small and large chambers of 15 m3 and 27 m3, with a height to width ratios of 1.49 and 2.02 respectively and with corresponding burner capacities of 560 kW and 900 kW. A major experimental trial has been performed in order to validate the results and reasonable consistency has been observed. The predicted results, with particular focus on the temperature distribution and heat transfer rate of two cases have been studied in detail.

  • 6.
    Kazemi, Mania
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Saffari Pour, Mohsen
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Du, Sichen
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Experimental and Modelling Study on Reduction of Hematite Pellets by Hydrogen GasManuscript (preprint) (Other academic)
  • 7.
    Kazemi, Mania
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Saffari Pour, Mohsen
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Sichen, Du
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Experimental and Modeling Study on Reduction of Hematite Pellets by Hydrogen Gas2017In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 48, no 2, p. 1114-1122Article in journal (Refereed)
    Abstract [en]

    Gaseous reduction by hydrogen was performed for three types of hematite pellets, two from industry and one prepared in the laboratory. The reduction mechanisms of the pellets were studied based on the morphologies of the partially reduced samples. Two mechanisms were found, the mechanisms of the two types of industrial pellets being very similar. The degree of reduction was followed as a function of time for each type of pellets. On the basis of the reaction mechanism of the industrial pellets, a mathematical model was developed. As a pioneer effort, the model combined the computational fluid dynamics approach for the flow and mass transfer in the gas phase with model of gas diffusion in the solid phase as well as the description of the chemical reaction at the reaction sites. The calculation results agreed well with the experimentally obtained reduction curves. The present work also emphasized the importance of evaluation of the reduction mechanisms and the properties of different types of iron ore pellets prior to developing a process model. While the present approach has established a good foundation for the dynamic modeling of the shaft reactor, more efforts are required to accomplish a realistic process model.

  • 8.
    Liu, H.
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology. Huazhong University of Science and Technology, China .
    Saffari Pour, Mohsen
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Mellin, Pelle
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Grip, C. -E
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Blasiak, Wlodzimierz
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    A thermodynamic study of hot syngas impurities in steel reheating furnaces: Corrosion and interaction with oxide scales2014In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 77, p. 352-361Article in journal (Refereed)
    Abstract [en]

    Environmental concerns lead industries to implement gasified biomass (syngas) as a promising fuel in steel reheating furnaces. The impurities of syngas as well as a combination with iron oxide scale form complex mixtures with low melting points, and might cause corrosion on steel slabs. In this paper, the effects of syngas impurities are thermodynamically investigated, when scale formation on the steel slabs surface simultaneously takes place. A steel reheating furnace can be divided into preheating, heating, and soaking zones where the temperature of a steel slab changes respectively. Therefore, the thermodynamic calculation is performed at different temperatures to predict the fate of impurities. Then, the stable species are connected with respective zones in a reheating furnace. It is concluded that reactions due to alkali compounds, chloride, and particulate matter could take place on steel slabs. In the low temperature range, interaction of sodium chloride occured with pure iron prior to scale formation. Then, at high temperature the reactions of impurities are notable with iron oxides due to scale growing. Furthermore, the multicomponent reactions with syngas impurities showed that most of alkali contents evaporate at first stages, and only small amounts of them remain in slag at high temperature.

  • 9. Sadat, E. S.
    et al.
    Faez, K.
    Saffari Pour, Mohsen
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology. KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Entropy-based video steganalysis of motion vectors2018In: Entropy, ISSN 1099-4300, E-ISSN 1099-4300, Vol. 20, no 4, article id 244Article in journal (Refereed)
    Abstract [en]

    In this paper, a new method is proposed for motion vector steganalysis using the entropy value and its combination with the features of the optimized motion vector. In this method, the entropy of blocks is calculated to determine their texture and the precision of their motion vectors. Then, by using a fuzzy cluster, the blocks are clustered into the blocks with high and low texture, while the membership function of each block to a high texture class indicates the texture of that block. These membership functions are used to weight the effective features that are extracted by reconstructing the motion estimation equations. Characteristics of the results indicate that the use of entropy and the irregularity of each block increases the precision of the final video classification into cover and stego classes. 

  • 10. Sadat, Elaheh Sadat
    et al.
    Faez, Karim
    Saffari Pour, Mohsen
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology. KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Process Metallurgy.
    Entropy-Based Video Steganalysis of Motion Vectors2018In: Entropy, ISSN 1099-4300, E-ISSN 1099-4300Article in journal (Refereed)
  • 11.
    Saffari Pour, Mohsen
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Producer Gas Implementation in Steel Reheating Furnaces from Lab to Industrial Scale: A Computational Fluid Dynamics and Thermodynamics Approach2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The integrated steel-making plants in Sweden contributed with approximately 8 % of the total CO2 emissions in the country in 2011. A major contributor to these emissions is the combustion of fossil fuels in different process units. Therefore, it is essential to reduce emissions by limiting the fossil fuels consumption in the steel industry. A possible solution to reduce the emissions is to implement alternative fuels, which are produced from various combustion and gasification sectors in the iron and steel-making industry. Currently, the blast furnace gas (BFG) and coke oven gas (COG) are extensively used for district heating purposes. Depending on the availability of biomass in a region, gasified biomass (Syngas) can also be used as an alternative fuel source. In addition, the extracted energy from these producer gases can be used in other heat treatment processes such as reheating furnaces. However, these producer gases contain several impurities such as, alkali metals, halogens, particulate matter, sulfur compounds and other mineral contaminants, which can be problematic. For instance, in the steel reheating furnaces, these impurities can form sticky layers of solutions on the steel slab surfaces which are not easy to remove.

                The High Temperature Agent Combustion (HiTAC) technology has several advantages compared to the conventional methods. These include temperature uniformity, a flexibility of fuels, low pollutant emissions and a volumetric combustion. In this study, these factors have been investigated for the pulverized coal combustion, when the coal particles are assumed to follow a Rosin-Rammler distribution. Moreover, due to the mentioned superior properties of HiTAC technique, it has also been applied for the combustion of producer gases as alternative fuel for steel reheating furnaces.

                A coupled Computational Fluid Dynamics (CFD) and thermodynamics approach has been developed to analyze the combustion of producer gases and the behavior of impurities in these gases for the steel reheating furnaces. The obtained results prove the capability of HiTAC technique to be used for the combustion of producer gases by enhancing the temperature and by reducing the size of steel reheating furnaces. The findings also show that the Low Calorific Value (LCV) of BFG and the presence of 52 % nitrogen in the gas are responsible for a lower heat release in comparison to other producer gases.

                The impurities in steel reheating furnaces are considered as ash particles having a particle size distribution similar to the pulverized coal particles. The accumulation of the ash particles at the steel slab surface is predicted using the CFD simulations. Furthermore, the thermo-chemical calculations are used to understand the effect of all the involved chemical compositions in an equilibrium thermodynamics system of impurities and iron-oxides. This thermodynamics study of impurities is divided in two steps. In the first study, at the steel slab surface, the temperature gradients and the concentration of impurities are not considered. This investigation is carried out to identify the reactivity and phase transformation of different ash mineral components with respect to the temperature zones (preheating, heating and soaking) in steel reheating furnaces. Here, chloride compounds are the most reactive compounds in comparison to other impurities. It is also found that an increased temperature from the preheating zone up to the soaking zone leads to an increased iron-oxide formation. In the heating and soaking zones, an addition of mineral compounds like SiO2 and CaO is also found to accelerate the formation of the sticky solutions at the steel slab surface. Moreover, by increasing the steel slab temperature the formations of sticky layers are highly abated in the late heating zone and the entire soaking zones.

                In the second study the concentration of particles, density of particles and temperature gradients at the steel slab surface are taken into account. Thereby, the shortcomings of the first thermodynamics system are improved. It is found that for the considered furnace configuration, the particles received the same velocity as the injected fuel (70 m/s) and they are heated up to a temperature of 1600 °C. The most of the particles, with the average size of 50 µm, are evacuated through the exhaust ports due to the inertial dominant force. Only around 10 percent of these particles have a tendency to stick to the steel slab surface at the heating zone rather than at the soaking zone. These findings could be applied for improvements in the combustion systems and furnace designs to reduce unwanted accumulations and hot-spots of sticky layers on the steel slab surface. This information may also be useful for planning of new investments in gas cleaning systems, if producer gases are used as fuels.

  • 12.
    Saffari Pour, Mohsen
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Andersson, Nils
    Ersson, Mikael
    Jonsson, Lage Tord Ingemar
    Jönsson, Pär Göran
    On Thermochemical Behaviors of Ash Particles during Combustion of Producer Gases inside a Steel Reheating FurnaceManuscript (preprint) (Other academic)
    Abstract [en]

    The use of producer gases from gasification and combustion of fossil fuels and biofuels in steel reheating furnaces represents a promising future application. Prior to the direct implementation of such gases as an alternative fuel for high quality steel products, a comprehensive thermochemical study of possible impurities inside the furnace is crucial. This is especially important for heating of high quality steel products. Ash is one of these impurities, which contains particular compounds like Sodium (Na), Potassium (K), Chloride (Cl), and other minerals. The depositions of these compounds, which cause a formation of sticky layer of solutions on the steel slabs surface, are responsible for low quality products. Furthermore, it is a challenge and energy consuming process to remove these elements from the slabs. In this paper, the combustion of a producer gas mixture including ash particles inside a batch type steel reheating furnace has been investigated. In the first step, a computational fluid dynamics (CFD) approach is utilized to investigate the feasible locations of ash particles at the interface layer of the flaring gas media and the steel slab surface. After that, result from thermodynamic calculations considering the slab temperature, particle concentrations, ash compositions, and its reactions with the steel slab are presented. The results show that the concentration of particles is highly dependent on the flow field, slab temperature, as well as their size distribution. Also, the most probable places of particles at the interface layer of flaring gas media and the steel slab surface is primarily found near the steel slab cross sectional sides in the heating zone. It is believed that the present results could be helpful for a further optimization of furnace and combustion system design.

  • 13.
    Saffari Pour, Mohsen
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Andersson, Nils Å. I.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Ersson, Mikael
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Jonsson, Lage Tord Ingemar
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Niska, John
    Rensgard, Anders
    Jönsson, Pär
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    The Behavior of Impurities During Producer Gas Implementation as Alternative Fuel in Steel Reheating Furnaces: A CFD and Thermo-Chemical Study2016In: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), USA: The American Society of Mechanical Engineers , 2016, Vol. 6A, article id V06AT08A011Conference paper (Refereed)
    Abstract [en]

    The use of available and cheap industrial producer gases as alternative fuels for the steel reheating furnaces is an attractive topic for steel industry. The application of producer gases for such furnaces introduces not only the complicated combustion system of Low Calorific Value (LCV) gases, but also several impurities that could be problematic for the quality of final steel products. The quality of steel can be highly affected by the interaction of impurities with iron-oxides at hot slab surfaces. In this research, the combustion of producer gases and the behavior of impurities at the steel slab surface are studied by aid of a novel coupled computational fluid dynamics (CFD) and thermodynamics approach. The impurities are introduced as mineral ash particles with the particle size distributions of 15–100 μm. The CFD predicted data regarding the accumulation of ash particles are extracted from an interface layer at the flaring gas media around the steel slab surface. Later on, these predicted data are used for the thermo-chemical calculations regarding the formation of sticky solutions and stable phases at the steel slab surface. The results show that the particles are more likely follow the flow due to the high injection velocity of fuel (70 m/s) and the dominant inertial forces. More than 90 percent of particles have been evacuated through the exhaust pipes. The only 10 percent of remaining particles due to the high recirculation zones at the middle of furnace and the impinging effect of front walls tend to stick to the side wall of slab in the heating zone more than the soaking zone.

  • 14.
    Saffari Pour, Mohsen
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Ersson, Mikael
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Jonsson, Lage Tord Ingemar
    Andersson, Nils
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Saffaripour, Mohammadhassan
    Shahid Bahonar University of Kerman, Kerman, Iran.
    Jönsson, Pär Göran
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    On the Implementation of Producer Gases as Alternative Fuels in Steel Reheating Furnaces2015In: Proccedings of ASME 2015 International Mechanical Engineering Congress and Exposition / [ed] ASME, Houston, Texas, USA, November 13–19, 2015: ASME Press, 2015, Vol. 6AConference paper (Refereed)
    Abstract [en]

    During the past decades, combustion of producer gases from other facilities has been introduced as one of the promising techniques in steel furnaces. The impurities inside producer gases are responsible for a low quality steel production due to formation of the molten ash that forms sticky layers of solutions on steel surfaces. Therefore, a comprehensive investigation is needed before a full implementation of producer gases inside the industrial furnaces. In this paper, the effects of impurities inside the gasified biomass flue gases are thermodynamically investigated regarding temperature zones inside a reheating furnace. After that, the high temperature agent combustion (HiTAC) is investigated as a solution for a steel batch reheating furnace to reduce the side effects of using the producer gases. Finally, computational fluid dynamics (CFD) is used as a numerical technique to compare four different producer gases in the studied furnace. The temperature distribution is validated with existing literature data. It shows a good agreement with a 5% error in the heating and a 10% error in the soaking zones of the reheating furnace. The comparison of simulation results assists in the understanding of the chemical and thermal behavior of different gases and provides useful data for the furnace fuel optimization.

  • 15. Saffari Pour, Mohsen
    et al.
    Mellin, Pelle
    Yang, Weihong
    Blasiak, Wlodzimierz
    Numerical Investigation of Syngas Combustion in a HiTAG System Using CFD Techniques2014In: PROCEEDINGS of the 10th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries / [ed] Stein Tore Johansen & Jan Erik Olsen, Trondheim, 2014Conference paper (Refereed)
    Abstract [en]

    Utilization of gasified biomass in the case of combustion could introduce a prominent way to high energy efficiency, pollutant emissions reduction, and heat recovery purposes. In this paper, secondary syngas combustion chamber of high temperature agent gasification (HiTAG) system is modelled with computational fluid dynamics (CFD) techniques. The numerical data in terms of temperature distribution and flue gas concentrations are compared with experimental measurements through the whole volume of such chamber. In order to reduce the pollutant emissions, and more efficient volumetric combustion, a low NOX burner is used in the secondary chamber. The validation of numerical results with experimental measurements shows a good consistency through the entire chamber. It is concluded that the NOX emission due to secondary air injection, and low NOX burner decreased significantly prior to spread in atmosphere. Moreover, the concentration of oxygen and carbon monoxide at the combustion exhaust reveals a reliable combustion system.

  • 16.
    Saffari Pour, Mohsen
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Yang, Weihong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Energy and Furnace Technology.
    Performance of pulverized coal combustion under high temperature air diluted by steam2014In: ISRN Mechanical Engineering, ISSN 2090-5122, E-ISSN 2090-5130, Vol. 2014Article in journal (Refereed)
    Abstract [en]

    The high temperature air combustion (HiTAC) is an advanced promising technology for heat recovery, energy saving, and stability improvement of flame. Computational fluid dynamic (CFD) is known as an applied tool to execute HiTAC modeling. In this paper, performances of pulverized coal combustion under the high preheated and oxygen deficient air are studied by both experimental and numerical methodology. The experimental facilities have been accomplished in a HiTAC chamber with coal injection velocity that ranges from 10 to 40 m/s. In order to achieve different preheated temperatures, the combustion air in such system is diluted by variable steam percentages from 0 to 44%. Results of mathematical simulation and experimental tests present convincible agreement through whole region. It is concluded that NOX emission is reduced by increasing the steam percentage in the oxidizer due to decreasing the flame temperature. Besides, graphical contours show that by adding more steam to oxidizer composition, the oxygen concentration decreased. Additionally, results show that when the injection speed of fuel is increased, NOX emission is also increased, and when the injection rate of preheated air is increased, NOX emission shows decreasing trend. Further contribution in future is needed to investigate the performance of such technologies.

  • 17.
    Svidró, Péter
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering. Jönköping University.
    Diószegi, Attila
    Jönköping University.
    Saffari Pour, Mohsen
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Jönsson, Pär
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Investigation of Dendrite Coarsening in Complex Shaped Lamellar Graphite Iron Castings2017In: Metals, ISSN 2075-4701, Vol. 7, p. 244-Article in journal (Refereed)
  • 18.
    Zeraatpisheh, Milad
    et al.
    Sharif Univ Technol, Dept Mech Engn, Tehran 79417, Iran..
    Arababadi, Reza
    Grad Univ Adv Technol, Inst Sci & High Technol & Environm Sci, Dept Energy, Kerman 76169, Iran..
    Pour, Mohsen Saffari
    KTH.
    Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs2018In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 11, no 12, article id 3271Article in journal (Refereed)
    Abstract [en]

    It is well known that the use of photovoltaic (PV) systems helps to preserve the environment, produce lower levels of greenhouse gases (GHGs), and reduce global warming, however, whether it is economically profitable for customers or not is highly debatable. This paper aims to address this issue. To be comprehensive, three different types of buildings are considered as case studies. Then, these three buildings are modeled in EnergyPlus to determine the rate of energy consumption. Afterward, comparisons of various solar system sizes based on economic parameters such as the internal rate of return, the net present value, payback period and profitability indexing for various-sized PV systems are carried out. The results show that by the demand charge tariffs, using PV systems has no economic justification. It has been shown that even with neglecting further costs of the PV system like maintenance, by demand charge tariffs, it is not economically beneficial for customers to use the PV systems. Profitability index of all three buildings with various PV power systems is between 0.2 to 0.8, which are by no means is desirable. Moreover, it was found that bigger solar systems are less cost-effective in the presence of demand charges.

1 - 18 of 18
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf