Change search
Refine search result
1 - 18 of 18
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Balieu, Romain
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Architecture, Architectural Technologies. KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Chen, Feng
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Kringos, Nicole
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Life Cycle Sustainability Assessment of Electrified Road Systems2019In: International Journal on Road Materials and Pavement Design, ISSN 1468-0629, E-ISSN 2164-7402Article in journal (Refereed)
    Abstract [en]

    The widespread use of Electric Vehicles (EVs) has been one of the main directionsfor pursuing a sustainable future of road transport in which, the deployment ofthe associated charging infrastructures, static or dynamic, has been included as oneof the main cornerstones for its success. Different electrified road (eRoad) systemswhich allow for dynamic charging of EVs by transferring electrical power from theroad to the vehicle in-motion, either in a conductive or contactless way, are underactive investigation. One of the important tasks in feasibility analysis of suchinfrastructure is to quantitatively assess its environmental performance and, thus,the consequential influences to the sustainability of road electrification as a whole.Having this concern in mind, in this study, a systematic LCA study is carried out in which the environmental impacts from the different life cycle stages have beencalculated and compared among several promising eRoad systems. In a next step,suitable strategies can be accordingly made to minimize these impacts in a most effectiveway; and more importantly, the LCA results of this study can serve as one ofthe important bases for conducting a more comprehensive and objective evaluationof the potential environmental benefits EVs could bring.

  • 2.
    Balieu, Romain
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Kringos, Nicole
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Chen, Feng
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Córdoba, E.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    Multiplicative viscoelastic-viscoplastic damage-healing model for asphalt-concrete materials2016In: RILEM Bookseries, Springer Netherlands , 2016, p. 235-240Conference paper (Refereed)
    Abstract [en]

    A viscoelastic-viscoplastic model based on a thermodynamic approach is developed under finite strain in this paper. By introducing a damage evolution, the proposed model is able to reproduce the behavior of Asphalt-Concrete materials until the complete fracture. Moreover, a recoverable part of the degradation is introduced to reproduce the self-healing observed under a sufficiently long rest period. The proposed model is implemented into a Finite Element code and good correlations between the numerical responses and the experiments have been observed. 

  • 3.
    Chen, Feng
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Sustainable Implementation of Electrified Roads: Structural and Material Analyses2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Given the promise of the Inductive Power Transfer (IPT) technology for eRoad applications, the potential challenges for a successful integration of dynamic IPT technology into the physical road structure are explored extensively in this research work. The Finite Element Method (FEM) is selected for studying the structural performance of an eRoad under operational conditions. In this, an energy-based finite strain constitutive model for asphalt materials is developed and calibrated, to enable the detailed investigation of the structural response and optimization of the considered eRoad. In the context of enabling both dynamic charging and autonomous driving for future electric vehicles, the influences to the pavement (rutting) performance by the changed vehicle behaviour are investigated as well. Moreover, to study the effect on the IPT system by the integration, the potential power loss caused within eRoad pavement materials is further examined by a combined analytic and experimental analysis. The direct research goal of this Thesis is therefore to enhance the possibility of a sustainable implementation of the eRoad solutions into the real society. At the same time, it aims to demonstrate that the road structure itself is an important part of smart infrastructure systems that can either become a bottleneck or a vessel of opportunities, supporting the successful integration of these complex systems.

  • 4.
    Chen, Feng
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    The Future of Smart Road Infrastructure: A Case Study for the eRoad2015Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    In the future, physical roads will not only serve for the mobility of the vehicles but also have the capability of enabling different smart functionalities, such as car2road communication, energy harvesting or dynamic charging of electrical vehicles. To ensure the sustainability of these advances, the environmental, economic and social costs for the road infrastructure itself should not offset its possible advances. Additionally, the road infrastructure itself may also need to be modified to ensure the long-term performance of the new functionalities.

    This licentiate mainly focused on the electrified road (called ‘eRoad’) infrastructure, which can be a representative case of the future smart road. Specifically, a historical overview of the technology development towards the electrification of road transportation sector is presented, along with an overview of prospective technologies for implementing an eRoad’s charging infrastructure. Of these, the Inductive Power Transfer (IPT) charging technology is examined in further details.

    The potential knowledge gaps for a successful integration of IPT charging technology within actual road infrastructure are discussed. Some general recommendations are given throughout the licentiate thesis, regarding such as the appropriate design of eRoad structure and right selection of road materials, the cost-effective maintenance operations in the long term, and the eRoad’s role in the overall life cycle environmental impacts in the electrification of road transportation sector. This licentiate provides the basis for further focus in this field and outlines the potential research areas that need further investigation to ensure the future of systemically optimized smart road infrastructure. 

  • 5.
    Chen, Feng
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    Balieu, Romain
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    Cordoba, Enrique
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Kringos, Niki
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    Towards an understanding of the structural performance of future electrified roads: a finite element simulation study2018In: The international journal of pavement engineering, ISSN 1029-8436, E-ISSN 1477-268X, Vol. 20, no 2, p. 204-215Article in journal (Refereed)
    Abstract [en]

    Nowadays, many novel technologies are under investigations for making our road infrastructure functionbeyond providing mobility and embrace other features that can promote the sustainability developmentof road transport sector. These new roads are often referred to as multifunctional or ‘smart’ roads. Focusin this paper is given to the structural aspects of a particular smart road solution called electrified road or‘eRoad’, which is based on enabling the inductive power transfer technology to charge electric vehiclesdynamically. Specifically, a new mechanistic-based methodology is firstly presented, using a finiteelement simulation and an advanced constitutive model for the asphalt concrete materials. Based onthis, the mechanical responses of a potential eRoad structure under typical traffic loading conditions arepredicted and analysed thoroughly. The main contributions of this paper include thus: (1) introducing anew methodology for analysing a pavement structure purely based on mechanistic principles; (2) utilisingthis methodology for the investigation of a future multifunctional road pavement structure, such as aneRoad; and (3) providing some practical guidance for an eRoad pavement design and the implementationinto practice.

  • 6.
    Chen, Feng
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    Balieu, Romain
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Kringos, Nicole
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Potential Influences on Long-Term Service Performance of Road Infrastructure by Automated Vehicles2016In: Transportation Research Record, ISSN 0361-1981, E-ISSN 2169-4052, no 2550, p. 72-79Article in journal (Refereed)
    Abstract [en]

    Automated vehicles (AVs) have received great attention in recent years, and an automated road transportation sector may become reality in the next decades. Many benefits of AVs have been optimistically predicted, although some benefits may be overestimated because of a lack of thinking from a holistic point of view. From a future perspective, this study investigated the potential consequences to the long-term service performance of practical physical road infrastructure after the advent of the implementation of AVs on a large scale. Specifically, the, pavement rutting performance by the possibly changed behaviors, such as the vehicle's wheel wander, lane capacity, and traffic speed, was examined carefully with the finite element modeling approach. With the use of AVs, the decreased wheel wander and increased lane capacity could bring an accelerated rutting potential, but the increase in traffic speed would negate this effect, which was shown by the simulation results of rut depth. Therefore the influence cannot be judged as positive or negative in general; judgment actually depends much on the practical road and traffic conditions. In the future the physical roads not only might serve for the mobility of the vehicles but also might be capable of enabling other new functions. An early consideration of how to lead the future development of physical road infrastructure toward multifunctionality is emphasized.

  • 7.
    Chen, Feng
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Balieu, Romain
    KTH, School of Architecture and the Built Environment (ABE), Architecture, Architectural Technologies. KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Kringos, Nicole
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Sustainable implementation of future smart road solutions: a case study on the electrified road2017In: Proceedings of the 10th International Conference on the Bearing Capacity of Roads, Railways and Airfields (BCRRA 2017) / [ed] Andreas Loizos, Imad Al-Qadi, Tom Scarpas, Athens, Greece: CRC Press, 2017Conference paper (Refereed)
    Abstract [en]

    An important feature of a future smart or multifunctional road is that an intrinsic integration of different new advances into the practical roads should be achieved, in terms of such as Car-to-Road communication, energy harvesting, autonomous driving or on-the-road charging. However, our current engineering and research communities do not necessarily allow for an optimal development of such integrated systems. To fill some of the knowledge gaps from infrastructure point of view, this research is focusing on a specific case of the electrified road (also called ‘eRoad’) that allows for on-the-road charging, in which the consequences and possible modifications of the road infrastructure are considered. Some preliminary analysis results are presented in this paper, from which it has been found that such kind of the integration could indeed influence the service performance of individual components of the whole system, while further studies should be carried out to ensure the implementation of these smart technologies is ultimately sustainable.

  • 8.
    Chen, Feng
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Balieu, Romain
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Kringos, Nicole
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Thermodynamics-based finite strain viscoelastic-viscoplastic model coupled with damage for asphalt material2017In: International Journal of Solids and Structures, ISSN 0020-7683, E-ISSN 1879-2146, Vol. 129, p. 61-73Article in journal (Refereed)
    Abstract [en]

    A thermodynamics based thermo-viscoelastic-viscoplastic model coupled with damage using the finite strain framework suitable for asphalt material is proposed in this paper. A detailed procedure for model calibration and validation is presented, utilizing a set of experimental measurements such as creep recovery, constant creep, and repeated creep-recovery tests under different loading conditions. The calibrated constitutive model is able to predict the sophisticated time- and temperature-dependent responses of asphalt material, both in tension and in compression. Moreover, a scenario case study on permanent deformation (rutting) prediction of a practical asphalt pavement structure is presented in this work. This paper presents the main features of this new constitutive model for asphalt: (1) A thermodynamics-based framework developed in the large strain context to derive the specific viscoelastic, viscoplastic and damage constitutive equations; (2) A viscoelastic dissipation potential involving deviatoric and volumetric parts, in which Prony series representations of the Lame constants are used; (3) A modified Perzyna's type viscoplastic formulation with non-associated flow rule adopted to simulate the inelastic deformation, using a Drucker-Prager type plastic dissipation potential; (4) A specific damage model developed for capturing the evolution disparity between tension and compression. As such, the developed model presents a robust, fully coupled and validated constitutive framework that includes the major behavioral components of asphalt materials, enabling thus an optimized simulation of predicted performance under various conditions. Further development improvements to the model in continued research efforts can be to include further environmental and physico-chemical material behavior such as ageing, healing or moisture induced damage.

  • 9.
    Chen, Feng
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Balieu, Romain
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Kringos, Niki
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Thermodynamics-based finite strain viscoelastic-viscoplastic model coupled with damage for asphalt materialArticle in journal (Other academic)
    Abstract [en]

    A thermodynamics based thermo-viscoelastic-viscoplastic model coupled with damage using the finite strain frameworksuitable for asphalt material is proposed in this paper. A detailed procedure for model calibration and validationis presented, utilizing a set of experimental measurements such as creep-recovery, constant creep, and repeated creeprecoverytests under dierent loading conditions. The calibrated constitutive model is able to predict the sophisticatedtime- and temperature- dependent responses of asphalt material, both in tension and in compression. Moreover, a scenariocase study on permanent deformation (rutting) prediction of a practical asphalt pavement structure is presentedin this work. This paper presents the main features of this new constitutive model for asphalt: 1) A thermodynamicsbasedframework developed in the large strain context to derive the specific viscoelastic, viscoplastic and damageconstitutive equations; 2) A viscoelastic dissipation potential involving deviatoric and volumetric parts, in whichProny series representations of the Lam´e constants are used; 3) A modified Perzyna’s type viscoplastic formulationwith non-associated flow rule adopted to simulate the inelastic deformation, using a Drucker-Prager type plastic dissipationpotential; 4) A specific damage model developed for capturing the evolution disparity between tension andcompression. As such, the developed model presents a robust, fully coupled and validated constitutive framework thatincludes the major behavioral components of asphalt materials, enabling thus an optimized simulation of predictedperformance under various conditions. Further development improvements to the model in continued research eortscan be to include further environmental and physico-chemical material behavior such as ageing, healing or moistureinduced damage.

  • 10.
    Chen, Feng
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    Coronado, Carlos F.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    Balieu, Romain
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    Kringos, Nicole
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    Structural performance of electrified roads: A computational analysis2018In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 195, p. 1338-1349Article in journal (Refereed)
    Abstract [en]

    Given its promise for enhanced sustainability, electrified road (eRoad) has become a realistic option to support the clean and energy efficient Electrical Vehicles (EVs). To investigate the structural implications, this study focuses on a promising eRoad system which is a dynamic application of the Inductive Power Transfer (IPT) to provide electrical power wirelessly to EVs in-motion. A computational study is made in which, via a series of Finite Element Modeling (FEM) analyses on the eRoad structural response under various rolling conditions, is found that eRoads could have quite different pavement performances comparing to the traditional road (tRoad). Importantly, harsh loading due to vehicle braking or accelerating could incur higher potential of premature damage to the structure, whereas sufficient bonding at the contact interfaces would improve the structural integrity and delay the damage risks. In addition, localized mechanical discontinuities could also be a critical threat to the performance of the overall structure. To ensure that eRoads fulfill their sustainability promise, it is thus recommended that more focus should be placed on the possible measures, such as new structures and materials, to improve the structural integrity and thus the overall pavement performance of the integrated system.

  • 11.
    Chen, Feng
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials.
    Jelagin, Denis
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials.
    Partl, Manfred
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials. EMPA–Swiss Federal Laboratories for Materials Science and Technology, Duebendorf, Switzerland.
    Experimental and numerical analysis of asphalt flow in a slump test2019In: International Journal on Road Materials and Pavement Design, ISSN 1468-0629, E-ISSN 2164-7402, Vol. 20, p. S446-S461Article in journal (Refereed)
    Abstract [en]

    The mechanical behaviour of uncompacted asphalt mixtures is still not well understood,threatening directly to the pavement practices such as control of mixture’s workability andsegregation. This situation may become even worse due to the gradually increasing complexityand advances in paving materials and technologies. This study adopts a slump flow testbased on concrete technology and a Discrete Element (DE)-based numerical tool to investigatethe mechanical behaviour of uncompacted asphalt mixture from a microstructural point ofview, particularly focusing on the bituminous binder effects. The combined experimental andnumerical analysis indicates that bitumen distinctly influences the contact interactions withinthe mixture and thus its macroscopic flow, which can be physically interpreted as a combinedeffect of lubricated friction and bonding force. Additional case studies demonstrate that the DEmodel is capable of simulating the flow response of asphalt mixtures under changed particlecontact conditions and driven force.

  • 12.
    Chen, Feng
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    Kringos, Nicole
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    Towards new infrastructure materials for on-the-road charging: A study of potential materials, construction and maintenance2014In: Electric Vehicle Conference (IEVC), 2014 IEEE International, IEEE conference proceedings, 2014, p. 1-5Conference paper (Other academic)
    Abstract [en]

    As a future-oriented industry, the electrified mobility has the potential to enhance the sustainability of our road transportation sector radically. With the aim to break the EV batteries’ bottleneck (e.g., cost, range anxiety, long waiting time) by focusing not on the battery but on the solution to charge it conveniently, different on-the-road-charging solutions have been found under active investigation. From a road infrastructure perspective, however, little attention has been given to the practical, physical roads where these charging solutions will be enabled. In reality, good performance of E-Road infrastructure in aspects such as robustness, durability, costeffectiveness will be crucial for the final success. Taking the Inductive Power Transfer (IPT) charging solution in a dynamic way as a basis, this paper mainly discusses about the physical infrastructural aspect i.e. the road infrastructural materials and the changed construction and maintenance principles. The paper aims to give developers in this field more awareness of the necessity and potential cross-coupling benefits from interdisciplinary collaboration, by taking the road infrastructure research into the concept development of E-Roads.

  • 13.
    Chen, Feng
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Transport Science.
    Kringos, Nicole
    KTH, School of Architecture and the Built Environment (ABE), Transport Science.
    Towards new infrastructure materials for on-the-road charging A study of potential materials, construction and maintenance2014In: 2014 IEEE INTERNATIONAL ELECTRIC VEHICLE CONFERENCE (IEVC), IEEE , 2014Conference paper (Refereed)
    Abstract [en]

    As a future-oriented industry, the electrified mobility has the potential to enhance the sustainability of our road transportation sector radically. With the aim to break the EV batteries' bottleneck (e.g., cost, range anxiety, long waiting time) by focusing not on the battery but on the solution to charge it conveniently, different on-the-road-charging solutions have been found under active investigation. From a road infrastructure perspective, however, little attention has been given to the practical, physical roads where these charging solutions will be enabled. In reality, good performance of E-Road infrastructure in aspects such as robustness, durability, cost-effectiveness will be crucial for the final success. Taking the Inductive Power Transfer (IPT) charging solution in a dynamic way as a basis, this paper mainly discusses about the physical infrastructural aspect i.e. the road infrastructural materials and the changed construction and maintenance principles. The paper aims to give developers in this field more awareness of the necessity and potential cross-coupling benefits from interdisciplinary collaboration, by taking the road infrastructure research into the concept development of E-Roads.

  • 14.
    Chen, Feng
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Taylor, Nathaniel
    KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.
    Balieu, Romain
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Kringos, Niki
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Dynamic application of the Inductive Power Transfer (IPT) systems in an electrified road: Dielectric power loss due to pavement materials2017In: Construction and Building Materials, ISSN 0950-0618, E-ISSN 1879-0526, Vol. 147, p. 9-16Article in journal (Refereed)
    Abstract [en]

    Inductive Power Transfer (IPT) technology is seen as a promising solution to be applied in an electrified road (eRoad) to charge Electric Vehicles (EVs) dynamically, i.e. while they are in motion. Focus in this study was placed on the dielectric loss effect of pavement surfacing materials on the inductive power transfer efficiency, induced after the integration of the technology into the physical road structure. A combined experimental and model prediction analysis was carried out to calculate this dielectric loss magnitude, based on which some preliminary conclusions as well as a prioritization of future focus needs were summarized in detail.

  • 15.
    Chen, Feng
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Taylor, Nathaniel
    KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.
    Kringos, Nicole
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Dynamic application of the Inductive Power Transfer (IPT) systems in an electrified road: Dielectric power loss due to pavement materials2016In: Construction and Building Materials, ISSN 0950-0618, E-ISSN 1879-0526Article in journal (Other academic)
    Abstract [en]

    It is well-known that the high cost and limited performance of existing energy storage systems have significantly constrained the commercialization of the Electric Vehicle (EV) at large scale. In recent years, attention has been given not only to the improved energy storage systems but also to develop appropriate charging infrastructures that would allow the EVs to be powered in an easier way. Inductive Power Transfer (IPT) technology, also known as a near-field wireless power transfer technology, is capable of delivering electricity wirelessly with large power and high efficiency at a given gap distance. It is therefore seen as a promising solution to be applied in an electrified road (eRoad) to charge EVs dynamically, i.e. while they are moving. Various technical aspects of this contactless charging solution have been studied actively by system developers, such as the charging power, its efficiency, the optimum gap distance as well safety issues. Focus in this study is placed on the effect of pavement surfacing materials on the wireless power transfer efficiency, after the integration of the technology into the physical road structures. Specifically, a combined experimental and model prediction analysis has been carried out to investigate this potential energy loss in a quantitative way, based on which some preliminary conclusions as well as a prioritization of future focus needs are summarized in detail. This work provides thus an important beginning for understanding the pavement materials’ influence on the IPT systems that may be used for dynamic applications in an eRoad.

  • 16.
    Chen, Feng
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    Taylor, Nathaniel
    KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.
    Kringos, Nicole
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Electrification of Roads: Opportunities and Challenges2015In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 150, p. 109-119Article in journal (Refereed)
    Abstract [en]

    The Electrical Vehicle (EV) has become a potential solution for enhancing the sustainability of our road transportation, in view of the environmental impacts traditional vehicles have regarding emissions and use of fossil fuel dependence. However, the widespread use of EVs is still restrained by the energy storage technologies, and the electrification of road transportation is still in its early stages. This paper focuses on the technical aspects related to the ‘electrification of roads’ (called ‘eRoads’) infrastructure that aims to diminish the limitations for using EVs. A historical overview of the technology development towards the electrification of road transportation is presented, along with an overview of prospective technologies for implementing an eRoad charging infrastructure. Of these, the Inductive Power Transfer (IPT) technology is examined in further details. The main objective of this paper is to explore the potential knowledge gaps that need to be filled for a successful integration of IPT technology within actual road infrastructure. As such, this paper can be used as an overview of the current state-of-the-art of eRoad infrastructure and also as guidance towards future research directions in this domain.  

  • 17.
    Chen, Feng
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering.
    Taylor, Nathaniel
    KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.
    Kringos, Nicole
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Birgisson, Björn
    KTH, School of Architecture and the Built Environment (ABE), Transport Science, Highway and Railway Engineering.
    A study on dielectric response of bitumen in the low-frequency range2015In: International Journal on Road Materials and Pavement Design, ISSN 1468-0629, E-ISSN 2164-7402, Vol. 16, p. 153-169Article in journal (Refereed)
    Abstract [en]

    From the current state of literature, the dielectric property of bitumen has not been understood extensively, nor its relation with other properties such as polarity and rheology. In this study, dielectric spectroscopy measurement in a low-frequency range (10−2–106 Hz) was performed on both pure bitumen in different grades and wax-modified bitumen (WMB). From the performed tests we found the following: (i) the dielectric response of base bitumen is strongly temperature and frequency dependent, which is also highly linked to the rheology of the system. (ii) No remarkable differences in the dielectric constant (Formula presented.) among different grades of bitumen from the same crude oil source can be seen. (iii) Regular changes of dielectric loss tangent (tan δ) among the different grades of bitumen can be observed, which can be a good indicator for the linkage between the dielectric and rheological responses. In addition, it can also be perceived that the dielectric spectroscopy may have the potential to become a new approach for the multi-scale characterisation of road infrastructure materials.

  • 18.
    Ledesma, Enrique Córdoba
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Chen, Feng
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Balieu, Romain
    KTH, School of Architecture and the Built Environment (ABE), Architecture, Architectural Technologies. KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Kringos, Nicole
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Towards an understanding of the structural integrity of electrified roads through a combined numerical and experimental approach2017In: TRB 96th Annual Meeting Compendium of Papers, 2017Conference paper (Refereed)
    Abstract [en]

    The continuous growth in road transportation demands further development towards sustainable strategies. The electrification of road infrastructure (commonly referred to as ‘e-Road’) to enable wireless charging solutions for Electric Vehicles (EVs) is arising as one of the most promising and yet challenging alternatives for the future mobility by road. In this context, the introduction of charging facilities in the pavement structure and its adequate performance from an infrastructural perspective is determining for the successful implementation of these systems.This study aims to evaluate the structural integrity of e-Roads, considering the embedment in the pavement of a solid module denominated ‘Charging Unit’ (CU) in which the charging facilities are assumed to be installed. To do so, the critical locations of an e-Road pavement structure were identified through computational modelling for its further representation as small-scale e-Road samples in the laboratory. Afterwards, this structure was subjected to different loading conditions using mechanical hydraulic devices and compared with conventional road samples produced under the same conditions. Finally, e-Road samples were scanned with X-ray Computed Tomography (CT) prior to, during and after loading for additional inspection. Results provided valuable learnings of the potential mechanisms of failure of such structure and a better understanding of the e-Road infrastructure. 

1 - 18 of 18
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf