Hemicellulosor är en grupp av heterogena polysackarider som utgör ca 30 % av trä och där de vanligaste typerna är xylaner, glukomannaner och xyloglukaner. Den komplexa strukturen gör det svårt att fullständigt förstå förhållandet mellan struktur och egenskaper, och deras biologiska roll är ännu inte fullständigt kartlagd. Dessutom är hemicellulosor känsliga för kemiska processer och tas inte tillvara på bästa sätt för att tillverka förädlade produkter så som nya material eller användas som additiv till livsmedel och farmaceutiska produkter etc. En ökad kunskap om deras funktion är viktig för utvecklingen av både processer och material. Målet med detta arbete har därför varit att öka den fundamentala förståelsen för hur struktur och egenskaper hos hemicellulosor från trä hänger ihop. Egenskaper så som flexibilitet, interaktion med cellulosa, löslighet, samt kemisk-, termisk- och biologisk stabilitet har utvärderats.
Molekyldynamiska (MD) simuleringar användes för att studera strukturer som återfinns i hemicellulosor på detaljnivå. Flexibiliteten utvärderades med avseende på hur konformationsrymden påverkades av vilka monosackarider som ingick i huvudkedjan, samt påverkan från sidogrupper. Baserat på huvudkedjan bör flexibilitetsordningen för studerade hemicellulosor i vattenlösning vara: xylan > glukomannan > xyloglukan. Dessutom användes MD simuleringar för att analysera hur strukturen hos xylaner påverkar interaktionen med cellulosa.
Hemicellulosor extraherades från björk och gran, och användes för att producera flera olika komposithydrogeler med bakteriell cellulosa. Dessa material studerades bland annat med avseende på de mekaniska egenskaperna och de tydligaste observationerna var att galaktoglukomannan bidrog till en ökad kompressionsmodul, medan xylan framförallt ökade töjbarheten i dragprov. Dessutom modifierades modellpolysackarider med liknande struktur som galaktoglukomannan och användes som extra rena och väldefinierade modellsystem. Acetylgrupper förekommer naturligt som sidogrupper på hemicellulosor och de kan även introduceras via kemisk modifiering. I detta projekt tillverkades mannaner med olika acetyleringsgrad och hur strukturen påverkade lösligheten i vatten och det organiska lösningsmedlet DMSO utvärderades. Det visade sig även att strukturen och lösligheten i vatten påverkade interaktionen med cellulosa. Acetyleringen hade också en positiv effekt på den biologiska och termiska stabiliteten.
Med kemiska massaprocesser i åtanke studerades nedbrytbarheten hos galaktoglukomannaner från gran i alkalisk lösning med avseende på strukturen och förekomsten av mer eller mindre stabila strukturella regioner föreslogs.
The macromolecular conformation of the constituent polysaccharides in lignocellulosic biomass influences their supramolecular interactions, and therefore their function in plants and their performance in technical products. The flexibility of glycosidic linkages from the backbone of hemicelluloses was studied by evaluating the conformational freedom of the φ and ψ dihedral angles using molecular dynamic simulations, additionally selected molecules were correlated with experimental data by nuclear magnetic resonance spectroscopy. Three types of β-(1→4) glycosidic linkages involving the monosaccharides (Glcp, Xylp and Manp) present in the backbone of hemicelluloses were defined. Different di- and tetrasaccharides with combinations of such sugar monomers from hemicelluloses were simulated, and free energy maps of the φ – ψ space and hydrogen-bonding patterns were obtained. The glycosidic linkage between Glc-Glc or Glc-Man (C-type) was the stiffest with mainly one probable conformation; the linkage from Man-Man or Man-Glc (M-type) was similar but with an increased probability for an alternative conformation making it more flexible, and the linkage between two Xyl-units (X-type) was the most flexible with two almost equally populated conformations. Glycosidic linkages of the same type showed essentially the same conformational space in both disaccharides and in the central region of tetrasaccharides. Different probabilities of glycosidic linkage conformations in the backbone of hemicelluloses can be directly estimated from the free energy maps, which to a large degree affect the overall macromolecular conformations of these polymers. The information gained contributes to an increased understanding of the function of hemicelluloses both in the cell wall and in technical products.
Galactoglucomannan (GGM) from sprucewas studied with respect to the degradation behavior inalkaline solution. Three reference systems includinggalactomannan from locust bean gum, glucomannanfrom konjac and the linear water-soluble carboxymethylcellulose were studied with focus onmolecular weight, sugar composition, degradationproducts, as well as formed oligomers, to identifyrelative structural changes in GGM. Initially allmannan polysaccharides showed a fast decrease inthe molecular weight, which became stable in the laterstage. The degradation of the mannan polysaccharidescould be described by a function corresponding to thesum of two first order reactions; one slow that wasascribed to peeling, and one fast that was connectedwith hydrolysis. The galactose side group wasstable under conditions used in this study (150 min,90 C, 0.5 M NaOH). This could suggest that, apartfrom the covalent connection to C6 in mannose, thegalactose substitutions also interact non-covalentlywith the backbone to stabilize the structure againstdegradation. Additionally, the combination of differentbackbone sugars seems to affect the stability of thepolysaccharides. For carboxymethyl cellulose thedegradation was linear over time which furthersuggests that the structure and sugar composition playan important role for the alkaline degradation. Moleculardynamics simulations gave details about theconformational behavior of GGM oligomers in watersolution, as well as interaction between the oligomersand hydroxide ions.
Hemicelluloses as major components of plant cell walls are acetylated to different extents. The biologicalfunctions of acetylation are not completely understood but suggested that one reason is to decrease themicrobial degradability of cell walls. Model seed galactomannan and glucomannan, which are structurallysimilar to an abundant class of wood hemicelluloses, were acetylated to various degrees and usedas sole carbon source on agar plates for microbial growth. When soil samples were inoculated on theplates, significantly fewer strains grew on the agar plates with highly acetylated mannans than withslightly acetylated or non-acetylated mannans. One filamentous fungus isolated and identified as aPenicillium species was shown to grow faster and stronger on non-acetylated than on highly acetylatedmannan. The data therefore support the hypothesis that a high degree of acetylation (DSac) can decreasethe microbial degradability of hemicelluloses. Possible mechanisms and the technological significance ofthis are discussed.
Xylan is tightly associated with cellulose and lignin in secondary plant cell walls, contributing to its rigidity and structural integrity in vascular plants. However, the molecular features and the nanoscale forces that control the interactions among cellulose microfibrils, hemicelluloses, and lignin are still not well understood. Here, we combine comprehensive mass spectrometric glycan sequencing and molecular dynamics simulations to elucidate the substitution pattern in softwood xylans and to investigate the effect of distinct intramolecular motifs on xylan conformation and on the interaction with cellulose surfaces in Norway spruce (Picea abies). We confirm the presence of motifs with evenly spaced glycosyl decorations on the xylan backbone, together with minor motifs with consecutive glucuronation. These domains are differently enriched in xylan fractions extracted by alkali and subcritical water, which indicates their preferential positioning in the secondary plant cell wall ultrastructure. The flexibility of the 3-fold screw conformation of xylan in solution is enhanced by the presence of arabinofuranosyl decorations. Additionally, molecular dynamic simulations suggest that the glycosyl substitutions in xylan are not only sterically tolerated by the cellulose surfaces but that they increase the affinity for cellulose and favor the stabilization of the 2-fold screw conformation. This effect is more significant for the hydrophobic surface compared with the hydrophilic ones, which demonstrates the importance of nonpolar driving forces on the structural integrity of secondary plant cell walls. These novel molecular insights contribute to an improved understanding of the supramolecular architecture of plant secondary cell walls and have fundamental implications for overcoming lignocellulose recalcitrance and for the design of advanced wood-based materials.