Change search
Refine search result
1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahmad, Nawaz
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    Wörman, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    Jarsjö, Jerker
    Stockholm University, Sweden.
    Sanchez-Vila, Xavier
    Universitat Politècnica de Catalunya, UPC-BarcelonaTech, 08034 Barcelona, Spain.
    Bottacin-Busolin, Andrea
    Hellevang, Helge
    Non-isothermal reactive transport modelling of dissolved CO2 leaking through a fractured caprockManuscript (preprint) (Other academic)
    Abstract [en]

    Geological storage of CO2 is considered as one of the mitigation actions for climate change adverse effects. However, some fraction of CO2 dissolved in the brine following injection, may leak from the reservoir through permeable zones such as conducting fractures. In this study we perform the reactive transport modelling of single-phase brine saturated with dissolved CO2 (CO2aq) along a conducting fracture in a clay-rich caprock. This study investigates the role of temperature and various reaction systems on the fate of migrating CO2aq, its geochemical interactions with the carbonate minerals, its conversion in geochemical reactions and associated medium porosity and permeability evolutions along the transport pathway.About 0.64% of leaking CO2aq is found converted into other ions in its geochemical interactions with calcite (simplified geochemical system). Addition of mineral dolomite in the geochemical system (extended geochemical system) results in up to 11% higher mass conversion of CO2 in reactions as compared to the simplified geochemical system. Considering extended geochemical system and heat transport by moving brine resulted in about 27.34% higher mass conversion of CO2 in reactions as compared to the simplified geochemical system. A combination of extended geochemical system, heat transport and sorption resulted in about 82.59% higher mass conversion of CO2 compared to the simplified geochemical system. Leaking CO2aq travelled less than 250 m along the fractured pathway, for a velocity of nearly 19 m/year in the fracture, due to retardation caused by mass stored in aqueous and adsorbed states.

  • 2.
    Ahmad, Nawaz
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering. Ministry of Petroleum and Natural Resources, Pakistan.
    Wörman, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    Sanchez-Vila, X.
    Jarsjö, J.
    Bottacin-Busolin, A.
    Hellevang, H.
    Injection of CO2-saturated brine in geological reservoir: A way to enhanced storage safety2016In: International Journal of Greenhouse Gas Control, ISSN 1750-5836, E-ISSN 1878-0148, Vol. 54, p. 129-144Article in journal (Refereed)
    Abstract [en]

    Injection of free-phase supercritical CO2 into deep geological reservoirs is associated with risk of considerable return flows towards the land surface due to the buoyancy of CO2, which is lighter than the resident brine in the reservoir. Such upward movements can be avoided if CO2 is injected in the dissolved phase (CO2aq). In this work, injection of CO2-saturated brine in a subsurface carbonate reservoir was modelled. Physical and geochemical interactions of injected low-pH CO2-saturated brine with the carbonate minerals (calcite, dolomite and siderite) were investigated in the reactive transport modelling. CO2-saturated brine, being low in pH, showed high reactivity with the reservoir minerals, resulting in a significant mineral dissolution and CO2 conversion in reactions. Over the injection period of 10 yr, up to 16% of the injected CO2 was found consumed in geochemical reactions. Sorption included in the transport analysis resulted in additional quantities of CO2 mass stored. However, for the considered carbonate minerals, the consumption of injected CO2aq was found mainly in the form of ionic trapping.

  • 3.
    Ahmad, Nawaz
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    Wörman, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    Sanchez-Vila, Xavier
    Universitat Politècnica de Catalunya, UPC-BarcelonaTech, 08034 Barcelona, Spain.
    Bottacin-Busolin, Andrea
    The role of advection and dispersion in the rock matrix on the transport of leaking CO2-saturated brine along a fractured zoneManuscript (preprint) (Other academic)
    Abstract [en]

    CO2 that is injected into a storage reservoir can leak in dissolved form because of brine displacement from the reservoir, which is caused by large-scale groundwater motion. Simulations of the reactive transport of leaking CO2aq along a conducting fracture in a clay-rich caprock are conducted to analyze the effect of various physical and geochemical processes. Whilst several modelling transport studies along rock fractures have considered diffusion as the only transport process in the surrounding rock matrix (diffusive transport), this study analyzes the combined role of advection and dispersion in the rock matrix in addition to diffusion (advection-dominated transport) on the migration of CO2aq along a leakage pathway and its conversion in geochemical reactions. A sensitivity analysis is performed to quantify the effect of fluid velocity and dispersivity. Variations in the porosity and permeability of the medium are observed in response to calcite dissolution and precipitation along the leakage pathway. We observe that advection and dispersion in the rock matrix play a significant role in the overall transport process. For the parameters that were used in this study, advection-dominated transport increased the leakage of CO2aq from the reservoir by nearly 305%, caused faster transport and increased the mass conversion of CO2aq in geochemical reactions along the transport pathway by approximately 12.20% compared to diffusive transport. 

  • 4.
    Ahmad, Nawaz
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    Wörman, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    Sanchez-Vila, Xavier
    Bottacin-Busolin, Andrea
    The role of advection and dispersion in the rock matrix on the transport of leaking CO2-saturated brine along a fractured zone2016In: Advances in Water Resources, ISSN 0309-1708, E-ISSN 1872-9657, Vol. 98, p. 132-146Article in journal (Refereed)
    Abstract [en]

    CO2 that is injected into a geological storage reservoir can leak in dissolved form because of brine displacement from the reservoir, which is caused by large-scale groundwater motion. Simulations of the reactive transport of leaking CO2aq along a conducting fracture in a clay-rich caprock are conducted to analyze the effect of various physical and geochemical processes. Whilst several modeling transport studies along rock fractures have considered diffusion as the only transport process in the surrounding rock matrix (diffusive transport), this study analyzes the combined role of advection and dispersion in the rock matrix in addition to diffusion (advection-dominated transport) on the migration of CO2aq along a leakage pathway and its conversion in geochemical reactions. A sensitivity analysis is performed to quantify the effect of fluid velocity and dispersivity. Variations in the porosity and permeability of the medium are found in response to calcite dissolution and precipitation along the leakage pathway. We observe that advection and dispersion in the rock matrix play a significant role in the overall transport process. For the parameters that were used in this study, advection-dominated transport increased the leakage of CO2aq from the reservoir by nearly 305%, caused faster transport and increased the mass conversion of CO2aq in geochemical reactions along the transport pathway by approximately 12.20% compared to diffusive transport.

  • 5.
    Ahmad, Nawaz
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    Wörman, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    Sanchez-Vila, Xavier
    Universitat Politècnica de Catalunya, UPC-BarcelonaTech, 08034 Barcelona, Spain.
    Jarsjö, Jerker
    Stockholm University, Sweden.
    Bottacin-Busolin, Andrea
    Hellevang, Helge
    Injection of CO2-saturated brine in geological reservoir: A way to enhanced storage safetyManuscript (preprint) (Other academic)
    Abstract [en]

    Injection of free phase supercritical CO2 into deep geological reservoirs is associated with risk of considerable return flows towards the land surface due to the buoyancy of CO2, which is lighter than the resident brine in the reservoir. Such upward movements can be avoided if CO2 is injected in the dissolved phase (CO2aq). In this work, injection of CO2-saturated brine in a subsurface carbonate reservoir is modelled. Physical and geochemical interactions of injected low-pH CO2-saturated brine with the carbonate minerals (calcite, dolomite and siderite) are investigated in the reactive transport modelling. CO2-saturated brine, being low in pH, shows high reactivity with the reservoir minerals, resulting in a significant mineral dissolution and CO2 conversion in reactions. Over the injection period of 10 years, up to 16% of the injected CO2 is found consumed in geochemical reactions. Sorption included in the transport analysis resulted in additional quantities of CO2 mass stored. However, for the considered carbonate minerals, the consumption of injected CO2aq is found mainly in the form of ionic trapping.

  • 6.
    Hamisi, Rajabu
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Renman, Gunno
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Renman, Agnieszka
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Wörman, Anders
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Resources, Energy and Infrastructure.
    Modelling Phosphorus Sorption Kinetics and the Longevity of Reactive Filter Materials Used for On-site Wastewater Treatment2019In: Water, Vol. 11, no 4, article id 811Article in journal (Refereed)
    Abstract [en]

    Use of reactive filter media (RFM) is an emerging technology in small-scale wastewater treatment to improve phosphorus (P) removal and filter material longevity for making this technology sustainable. In this study, long-term sorption kinetics and the spatial dynamics of sorbed P distribution were simulated in replaceable P-filter bags filled with 700 L of reactive material and used in real on-site treatment systems. The input data for model calibration were obtained in laboratory trials with Filtralite P®, Polonite® and Top16. The P concentration breakthrough threshold value was set at an effluent/influent (C/C0) ratio of 1 and simulations were performed with P concentrations varying from 1 to 25 mg L−1. The simulation results showed that influent P concentration was important for the breakthrough and longevity, and that Polonite performed best, followed by Top16 and Filtralite P. A 100-day break in simulated intermittent flow allowed the materials to recover, which for Polonite involved slight retardation of P saturation. The simulated spatial distribution of P accumulated in the filter bags showed large differences between the filter materials. The modelling insights from this study can be applied in design and operation of on-site treatment systems using reactive filter materials

  • 7.
    Hamisi, Rajabu
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Renman, Gunno
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Renman, Agnieszka
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Wörman, Anders
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Modelling phosphorus sorption kinetics and the longevity of reactive filter materials used for on-sitewastewater treatment2019In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 11, no 4, article id 811Article in journal (Refereed)
    Abstract [en]

    Use of reactive filter media (RFM) is an emerging technology in small-scale wastewater treatment to improve phosphorus (P) removal and filter material longevity for making this technology sustainable. In this study, long-term sorption kinetics and the spatial dynamics of sorbed P distribution were simulated in replaceable P-filter bags filled with 700 L of reactive material and used in real on-site treatment systems. The input data for model calibration were obtained in laboratory trials with Filtralite P®, Polonite® and Top16. The P concentration breakthrough threshold value was set at an effluent/influent (C/C 0 ) ratio of 1 and simulations were performed with P concentrations varying from 1 to 25 mg L -1 . The simulation results showed that influent P concentration was important for the breakthrough and longevity, and that Polonite performed best, followed by Top16 and Filtralite P. A 100-day break in simulated intermittent flow allowed the materials to recover, which for Polonite involved slight retardation of P saturation. The simulated spatial distribution of P accumulated in the filter bags showed large differences between the filter materials. The modelling insights from this study can be applied in design and operation of on-site treatment systems using reactive filter materials.

  • 8.
    Hamisi, Rajabu
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Renman, Gunno
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Renman, Agnieszka
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Wörman, Anders
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Resources, Energy and Infrastructure.
    Phosphorus sorption and leaching in sand filters used for onsite wastewater treatment - a column experimentIn: Article, book review (Refereed)
    Abstract [en]

    The sorption capacities of filter sands used for onsite wastewater treatment and their associated risks of phosphorus (P) leakage on contact with rainwater were investigated in column experiments and modelling studies. Columns packed with sand were exposed to real domestic wastewater of different characteristics and hydraulic loading modes. The wastewater fed into the columns was effluent collected from three different treatment units in the field: a septic tank (ST), biofiltration tank (BF) and Polonite® filter bag (PO). The risk of P leaching to groundwater and surface water was also assessed, by exposing the same sand columns to artificial rainwater. The results indicated that sand columns can exhibit different adsorption capacities for Total-P, phosphate-P and total suspended solids, depending on the characteristics of influent wastewater. The adsorption capacity increased in the order ST > BF > PO, based on availability of organic matter to form biofilm. Effluent from Pol columns was significantly clearer, indicating lower organics content, than effluent from ST and BF columns. The modelled breakthrough curves for Total-P desorption agreed satisfactorily with the measured values, but further model improvement is needed.

  • 9.
    Hamisi, Rajabu
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Renman, Gunno
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Renman, Agnieszka
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Wörman, Anders
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Resources, Energy and Infrastructure.
    Simulating the hydraulic dynamics and treatment performance of a sequencing batch flow constructed wetlandIn: Article, book review (Refereed)
    Abstract [en]

    In a six-month field trial, the performance of a full-scale sequencing batch flow constructed wetland (SBCW) treating on-site wastewater was determined. The filling and draining periods lasted 5-9 days, depending on wastewater production by users (two households). The results indicated that the SBCW system efficiently removed ammonium-nitrogen (NH4-N, 76%) and Escherichia coli (89%). However, draining by pumping increased preferential water flow and considerably limited removal of dissolved phosphorus (PO4-P) in the filter bed. Analysis of water samples from nine points and three vertical levels of the wetland bed showed that pumping aerated the bed, resulting in removal of NH4-N being highest in the top 0-0.2 m layer (43%) intermediate in the 0.2-0.4 m layer (32%), and lowest in the deep (0.4-0.6 m) layer (4%). Complementary modeling using COMSOL Multiphysics software to predict the hydraulic dynamics for three different SBCW designs indicated that the drainage system of the present SBCW should be re-designed to increase contact time and aeration, for improved phosphorus and nitrogen removal.

  • 10.
    Mojarrad, Babak Brian
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Betterle, Andrea
    EAWAG Swiss Fed Inst Aquat Sci & Technol, Dept Water Resources & Drinking Water, CH-8600 Dubendorf, Switzerland.;Univ Padua, Dept ICEA, I-35100 Padua, Italy.;Univ Padua, Int Ctr Hydrol Dino Tonini, I-35100 Padua, Italy..
    Singh, Tanu
    Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B45 0AJ, W Midlands, England..
    Olid, Carolina
    Umea Univ, Climate Impacts Res Ctr, Dept Ecol & Environm Sci, S-98107 Abisko, Sweden..
    Wörman, Anders
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    The Effect of Stream Discharge on Hyporheic Exchange2019In: Water, ISSN 2073-4441, E-ISSN 2073-4441, Vol. 11, no 7, article id 1436Article in journal (Refereed)
    Abstract [en]

    Streambed morphology, streamflow dynamics, and the heterogeneity of streambed sediments critically controls the interaction between surface water and groundwater. The present study investigated the impact of different flow regimes on hyporheic exchange in a boreal stream in northern Sweden using experimental and numerical approaches. Low-, base-, and high-flow discharges were simulated by regulating the streamflow upstream in the study area, and temperature was used as the natural tracer to monitor the impact of the different flow discharges on hyporheic exchange fluxes in stretches of stream featuring gaining and losing conditions. A numerical model was developed using geomorphological and hydrological properties of the stream and was then used to perform a detailed analysis of the subsurface water flow. Additionally, the impact of heterogeneity in sediment permeability on hyporheic exchange fluxes was investigated. Both the experimental and modelling results show that temporally increasing flow resulted in a larger (deeper) extent of the hyporheic zone as well as longer hyporheic flow residence times. However, the result of the numerical analysis is strongly controlled by heterogeneity in sediment permeability. In particular, for homogeneous sediments, the fragmentation of upwelling length substantially varies with streamflow dynamics due to the contribution of deeper fluxes.

  • 11.
    Morén, Ida
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    Wörman, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    Riml, Joakim
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    Design of Remediation Actions for Nutrient Mitigation in the Hyporheic Zone2017In: Water resources research, ISSN 0043-1397, E-ISSN 1944-7973, Vol. 53, no 11, p. 8872-8899Article in journal (Refereed)
    Abstract [en]

    Although hyporheic exchange has been shown to be of great importance for the overall water quality of streams, it is rarely considered quantitatively in stream remediation projects. A main driver of hyporheic exchange is the hydraulic head fluctuation along the streambed, which can be enhanced by modifications of the streambed topography. Here we present an analytical 2-D spectral subsurface flow model to estimate the hyporheic exchange associated with streambed topographies over a wide range of spatial scales; a model that was validated using tracer-test-results and measurements of hydraulic conductivity. Specifically, engineered steps in the stream were shown to induce a larger hyporheic exchange velocity and shorter hyporheic residence times compared to the observed topography in Tullstorps Brook, Sweden. Hyporheic properties were used to parameterize a longitudinal transport model that accounted for reactions in terms of first-order decay and instantaneous adsorption. Theoretical analyses of the mitigation effect for nitrate due to denitrification in the hyporheic zone show that there is a Damkohler number of the hyporheic zone, associated with several different stream geomorphologies, that optimizes nitrate mass removal on stream reach scale. This optimum can be limited by the available hydraulic head gradient given by the slope of the stream and the geological constraints of the streambed. The model illustrates the complex interactions between design strategies for nutrient mitigation, hyporheic flow patterns, and stream biogeochemistry and highlights the importance to diagnose a stream prior remediation, specifically to evaluate if remediation targets are transport or reaction controlled.

  • 12.
    Wu, Liwen
    et al.
    Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Ecohydrol, Berlin, Germany.;Humboldt Univ, Geog Dept, Berlin, Germany..
    Singh, Tanu
    Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham, W Midlands, England..
    Gomez-Velez, Jesus
    Vanderbilt Univ, Dept Civil & Environm Engn, Nashville, TN 37235 USA..
    Nutzmann, Gunnar
    Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Ecohydrol, Berlin, Germany.;Humboldt Univ, Geog Dept, Berlin, Germany..
    Wörman, Anders
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering.
    Krause, Stefan
    Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham, W Midlands, England..
    Lewandowski, Joerg
    Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Ecohydrol, Berlin, Germany.;Humboldt Univ, Geog Dept, Berlin, Germany..
    Impact of Dynamically Changing Discharge on Hyporheic Exchange Processes Under Gaining and Losing Groundwater Conditions2018In: Water resources research, ISSN 0043-1397, E-ISSN 1944-7973, Vol. 54, no 12, p. 10076-10093Article in journal (Refereed)
    Abstract [en]

    Channel discharge, geomorphological setting, and regional groundwater flow determine the spatiotemporal variability of bedform-induced hyporheic exchange and the emergence of biogeochemical hot spots and hot moments that it drives. Of particular interest, and significantly understudied, is the role that dynamically changing discharge has on the hyporheic exchange process and how regional groundwater flow modulates the effects of transience. In this study, we use a reduced-complexity model to systematically explore the bedform-induced hyporheic responses to dynamically changing discharge events in systems with different bedform geometries exposed to varying degrees of groundwater flow (under both upwelling and downwelling conditions). With this in mind, we define metrics to quantify the effects of transience: spatial extent of the hyporheic zone, net hyporheic flux, mean residence time, and denitrification efficiency. We find that regional groundwater flow and geomorphological settings greatly modulate the temporal evolution of bedform-induced hyporheic responses driven by a single-peak discharge event. Effects of transience diminish with increasing groundwater upwelling or downwelling fluxes, decreasing bedform aspect ratios, and decreasing channel slopes. Additionally, we notice that increasing discharge intensities can reduce the modulating impacts of regional groundwater flow on the effects of transience but hardly overcomes the geomorphological controls. These findings highlight the necessities of evaluating hyporheic exchange processes in a more comprehensive framework.

  • 13.
    Wörman, Anders
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    Lindstrom, G.
    Riml, Joakim
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    The power of runoff2017In: Journal of Hydrology, ISSN 0022-1694, E-ISSN 1879-2707, Vol. 548, p. 784-793Article in journal (Refereed)
    Abstract [en]

    Although the potential energy of surface water is a small part of Earth's energy budget, this highly variable physical property is a key component in the terrestrial hydrologic cycle empowering geomorphological and hydrological processes throughout the hydrosphere. By downscaling of the daily hydrometeorological data acquired in Sweden over the last half-century this study quantifies the spatial and temporal distribution of the dominating energy components in terrestrial hydrology, including the frictional resistance in surface water and groundwater as well as hydropower. The energy consumed in groundwater circulation was found to be 34.6 TWh/fy or a heat production of approximately 13% of the geothermal heat flux. Significant climate driven, periodic fluctuations in the power of runoff, stream flows and groundwater circulation were revealed that have not previously been documented. We found that the runoff power ranged from 173 to 260 TWh/y even when averaged over the entire surface of Sweden in a five-year moving window. We separated short-term fluctuations in runoff due to precipitation filtered through the watershed from longer-term seasonal and climate driven modes. Strong climate driven correlations between the power of runoff and climate indices, wind and solar intensity were found over periods of 3.6 and 8 years. The high covariance that we found between the potential energy of surface water and wind energy implies significant challenges for the combination of these renewable energy sources.

  • 14.
    Wörman, Anders
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Resources, Energy and Infrastructure.
    Mojarrad, Babak Brian
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Resources, Energy and Infrastructure.
    Riml, Joakim
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Resources, Energy and Infrastructure.
    Fragmentation of the Hyporheic Zone Due to Regional Groundwater Circulation2019In: Water resources research, ISSN 0043-1397, E-ISSN 1944-7973, Vol. 55, no 2, p. 1-21Article in journal (Refereed)
    Abstract [en]

    By use of numerical modeling and field observations, this work quantified the effects of catchment-scale upwelling groundwater on the hyporheic (below stream) fluxes over a wide range of spatial scales. A groundwater flow model was developed that specifically accounted for the hydrostatic and dynamic head fluctuations induced by the streambed topography. Although the magnitudes and relative importance of these streambed-induced fluxes were found to be highly sensitive to site-specific hydromorphological properties, we showed that streambed topographic structures exert a predominant control on the magnitude of hyporheic exchange fluxes in a Swedish boreal catchment. The magnitude of the exchange intensity evaluated at the streambed interface was found to be dominated by the streambed-induced hydraulic head across stream order. However, the catchment-scale groundwater flow field substantially affected the distribution of groundwater discharge points and thus decreased the fragmentation of the hyporheic zone, specifically by shifting the cumulative density function toward larger areas of coherent upwelling at the streambed interface. This work highlights the spectrum of spatial scales affecting the surface water-groundwater exchange patterns and resolves the roles of key mechanisms in controlling the fragmentation of the hyporheic zone.

  • 15.
    Zmijewski, Nicholas
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    Wörman, Anders
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Hydraulic Engineering.
    Coupled geomorphologic dispersion and reservoir managementManuscript (preprint) (Other academic)
1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf