Endre søk
Begrens søket
1 - 10 of 10
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Afzal, Muhammad
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Saleemi, Mohsin
    KTH, Skolan för informations- och kommunikationsteknik (ICT), Material- och nanofysik.
    Wang, Baoyuan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Xia, Chen
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Zhang, Wei
    He, Yunjuan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Jayasuriya, Jeevan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Zhu, Binzhu
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.5Co0.8Fe0.2O3-delta- Sm0.2Ce0.8O1.9) and Schottky barrier2016Inngår i: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 328, s. 136-142Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) is synthesized via a chemical co-precipitation technique for a low temperature solid oxide fuel cell (LTSOFC) (300-600 degrees C) and electrolyte-layer free fuel cell (EFFC) in a comprehensive study. The EFFC with a homogeneous mixture of samarium doped ceria (SDC): BSCF (60%:40% by weight) which is rather similar to the cathode (SDC: BSCF in 50%:50% by weight) used for a three layer SOFC demonstrates peak power densities up to 655 mW/cm(2), while a three layer (anode/ electrolyte/cathode) SOFC has reached only 425 mW/cm(2) at 550 degrees C. Chemical phase, crystal structure and morphology of the as-prepared sample are characterized by X-ray diffraction and field emission scanning electron microscopy coupled with energy dispersive spectroscopy. The electrochemical performances of 3-layer SOFC and EFFC are studied by electrochemical impedance spectroscopy (EIS). As-prepared BSCF has exhibited a maximum conductivity above 300 S/cm at 550 degrees C. High performance of the EFFC device corresponds to a balanced combination between ionic and electronic (holes) conduction characteristic. The Schottky barrier prevents the EFFC from the electronic short circuiting problem which also enhances power output. The results provide a new way to produce highly effective cathode materials for LTSOFC and semiconductor designs for EFFC functions using a semiconducting-ionic material.

  • 2.
    Claesson, Per M.
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap. RISE.
    Dobryden, Illia
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    He, Yunjuan
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Li, Gen
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Surface Nanomechanics of Coatings and Hydrogels2019Inngår i: IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing , 2019, nr 1Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Due to the increasing use of nanostructured materials and thin coatings as barrier materials, it has become of high importance to measure and understand material properties on the nm to 100 nm length scales. In this article we demonstrate and discuss how atomic force microscopy techniques can be used to this end. It is demonstrated that the classical analysis based on the assumption of a purely elastic material response is a fair approximation for relatively stiff coatings (elastic modulus order of GPa), whereas viscous responses must be considered for soft materials (apparent modulus order of MPa) such as hydrogels.

  • 3.
    Claesson, Per M.
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap. SP Technical Research Institute of Sweden.
    Dobryden, Illia
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Li, Gen
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    He, Yunjuan
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Huang, Hui
    KTH, Skolan för kemivetenskap (CHE), Kemi, Yt- och korrosionsvetenskap.
    Thorén, Per-Anders
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Nanostrukturfysik.
    Haviland, David B.
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Nanostrukturfysik.
    From force curves to surface nanomechanical properties2017Inngår i: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 19, nr 35, s. 23642-23657Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Surface science, which spans the fields of chemistry, physics, biology and materials science, requires information to be obtained on the local properties and property variations across a surface. This has resulted in the development of different scanning probe methods that allow the measurement of local chemical composition and local electrical and mechanical properties. These techniques have led to rapid advancement in fundamental science with applications in areas such as composite materials, corrosion protection and wear resistance. In this perspective article, we focussed on the branch of scanning probe methods that allows the determination of surface nanomechanical properties. We discussed some different AFM-based modes that were used for these measurements and provided illustrative examples of the type of information that could be obtained. We also discussed some of the difficulties encountered during such studies.

  • 4.
    He, Yunjuan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Corrosion protection and nanomechanical properties of waterborne acrylate-based coating with and without nanocellulose on carbon steel2019Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Corrosion protection is commonly achieved by applying a thin polymer coating on metal surfaces. In this doctoral thesis, a waterborne hydroxyacrylate-melamine copolymer coating was used for this purpose. The first step was to find the optimal curing conditions. To this end the effect of curing time at 180 °C on the conversion of the cross-linking reaction, surface topography, nanomechanical and nanowear properties were investigated using atomic force microscopy, AFM. The results demonstrated that optimal performance required 10 min curing at 180 °C. This resulted in 80% conversion of the cross-linking reaction, as well as good barrier performance with polarization resistance of the order of 109Ω·cm2during 35 days in 0.1 M NaCl solution as determined by Electrochemical Impedance Spectroscopy (EIS). It also resulted in minor surface roughness and high surface elastic modulus in the order of GPa. 

     

    This waterborne coating and its nanocomposite containing 0.5 wt.% cellulose nanocrystals (CNC) were systematically studied, focusing on their corrosion protection performance and the effect of environment and localized wear on the properties of the top surface. The results show that both coatings have high polarization resistance, Rp. For the matrix coating the polarization resistance displays a slightly decreasing trend with time, as expected for a barrier coating. In contrast, the CNC nanocomposite coating exhibits an unusual and unexpected increase in polarization resistance with time. The difference in the time dependence of Rp can be attributed to the reinforcement effect of CNC, which form strong hydrogen bonding interactions with the matrix coating. Further, the appearance of a second time constant in the corresponding EIS spectra implies formation of a more protective second layer at the metal-coating interface. The presence of this compact layer also contributes to the corrosion protection offered by the CNC nanocomposite coating. In addition, both coatings show only limited water-uptake during long term exposure to 0.1 M NaCl. The water up-take is too small to measurably change the coating capacitance, as studied by EIS. However, AFM studies of surface nanomechanical properties show that for the CNC nanocomposite some water penetration occurs, which irreversibly renders the surface softer.

     

    Inspired by the CNC nanocomposite coating and its favorable corrosion protective properties, 0.5 wt.% cellulose nanofibrils, CNF, nanocomposite coatings were also studied using the same methodologies. The results revealed that the CNF nanocomposite coating cannot provide efficient corrosion protection performance even over a period of 24 h. The measured polarization resistance decreases rapidly over time, and consistently water uptake is readily observed by analyzing coating capacitance using EIS technique. The substantial difference in corrosion protective properties of the CNC nanocomposite and the CNF nanocomposite are explained mainly from the perspective of microstructure, matrix-CNC or matrix-CNF interactions by using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The results show the presence of defects on the surface and in the bulk and absence of strong hydrogen bonding interactions between matrix and CNF. These are two reasons for why the CNC nanocomposite performs well in terms of corrosion protection, whereas the CNF nanocomposite does not. 

     

    In real applications good barrier coatings may also fail due to external forces such as erosion by wind and water, impact of solid particles or sliding motions against other objects, which may destroy the coating integrity. This motivated further studies of the matrix and the CNC nanocomposite, by focusing on their nanomechanical and nano-wear properties using local measurements by means of AFM. The effect of applied normal load, ranging from 50 – 400 nN, scanning speed, ranging from 1 – 20 µm/s, operating environment including air and water, as well as exposure to corrosive 0.1 M NaCl solution, were systematically studied and discussed.

  • 5.
    He, Yunjuan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Boluk, Yaman
    Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB, Canada..
    Pan, Jinshan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Ahniyaz, Anwar
    RISE Res Inst Sweden, Div Biosci & Mat, Stockholm, Sweden..
    Deltin, Tomas
    PTE Coatings AB, Gamleby, Sweden..
    Claesson, Per M.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Comparative study of CNC and CNF as additives in waterborne acrylate-based anti-corrosion coatings2019Inngår i: Journal of Dispersion Science and Technology, ISSN 0193-2691, E-ISSN 1532-2351Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Nanocomposite coatings are of great interest as barrier coatings since synergy effects between matrix and additive properties can be achieved. This, however, requires favorable additive-matrix interactions to provide a strong interphase (interface region). In this work we elucidate the properties of two environmentally benign nanocomposite coatings based on a waterborne acrylate formulation with additives from renewable sources, i.e. either cellulose nanocrystals, CNC; or, alternatively, cellulose nanofibrils, CNF. We focus on the corrosion protective properties of these coatings and discuss the reason why the nanocomposite with CNC displays favorable corrosion protection properties whereas that with CNF does not. To this end we utilized scanning electron microscopy, water contact angle measurement, Fourier transform infrared spectroscopy and electrochemical impedance spectroscopy techniques to investigate the microstructure, surface wetting, interactions between cellulosic materials and matrix as well as corrosion protective properties of both composite coatings.

  • 6.
    He, Yunjuan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Boluk, Yaman
    Univ Alberta, Dept Civil & Environm Engn, Edmonton, AB T6G 1H9, Canada.
    Pan, Jinshan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Ahniyaz, Anwar
    RISE Res Inst Sweden, Div Biosci & Mat, SE-11486 Stockholm, Sweden.
    Deltin, Tomas
    PTE Coatings AB, Hammarsvagen 4, SE-59432 Gamleby, Sweden.
    Claesson, Per M.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap. RISE Res Inst Sweden, Div Biosci & Mat, SE-11486 Stockholm, Sweden.
    Corrosion protective properties of cellulose nanocrystals reinforced waterborne acrylate-based composite coating2019Inngår i: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 155, s. 186-194Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The present investigation highlights corrosion protection of carbon steel by a waterborne acrylate-based matrix coating, with and without reinforcement by cellulose nanocrystals, by using electrochemical impedance spectroscopy in 0.1 M NaCl solution over a period of 35 days. Interactions between cellulose nanocrystals and the matrix coating were demonstrated by Fourier transform infrared spectroscopy. The results show that both coatings have high barrier performance but different protective characteristics during long-term exposure. The differences can be attributed to the reinforcement effect of cellulose nanocrystals caused by hydrogen bonding interactions between cellulose nanocrystals and the matrix coating.

  • 7.
    He, Yunjuan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Dobryden, Illia
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Pan, Jinshan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Ahniyaz, Anwar
    RISE Res Inst Sweden, Div Biosci & Mat, SE-11486 Stockholm, Sweden..
    Deltin, Tomas
    PTE Coatings AB, Hammarsvagen 4, SE-59432 Gamleby, Sweden..
    Corkery, Robert W.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Claesson, Per M.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Nano-scale mechanical and wear properties of a waterborne hydroxyacrylic-melamine anti-corrosion coating2018Inngår i: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 457, s. 548-558Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Corrosion protection is commonly achieved by applying a thin polymer coating on the metal surface. Many studies have been devoted to local events occurring at the metal surface leading to local or general corrosion. In contrast, changes occurring in the organic coating after exposure to corrosive conditions are much less studied. In this article we outline how changes in the coating itself due to curing conditions, environmental and erosion effects can be investigated at the nanometer scale, and discuss how such changes would affect its corrosion protection performance. We focus on a waterborne hydroxyacrylic-melamine coating, showing high corrosion protection performance for carbon steel during long-term (approximate to 35 days) exposure to 0.1 M NaCl solution. The effect of curing time on the conversion of the crosslinking reaction within the coating was evaluated by fourier transform infrared spectroscopy (FTIR); the wetting properties of the cured films were investigated by contact angle measurement, and the corrosion resistance was studied by electrochemical impedance spectroscopy (EIS). In particular, coating nanomechanical and wear properties before and after exposure to 0.1 M NaCl, were evaluated by atomic force microscopy (AFM). Fiber-like surface features were observed after exposure, which are suggested to arise due to diffusion of monomers or low molecular weight polymers to the surface. This may give rise to local weakening of the coating, leading to local corrosion after even longer exposure times. We also find a direct correlation between the stick-slip spacing during shearing and plastic deformation induced in the surface layer, giving rise to topographical ripple structures on the nanometer length scale.

  • 8.
    He, Yunjuan
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi. Faculty of Computer and Information, Hubei University, Wuhan, Hubei, China.
    Fan, Liangdong
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi. Faculty of Computer and Information, Hubei University, Wuhan, Hubei, China.
    Afzal, Muhammad
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Singh, Manish
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi.
    Zhang, Wei
    Zhao, Yufeng
    Li, Junjiao
    Zhu, Bin
    Faculty of Computer and Information, Hubei University, Wuhan, Hubei, China.
    Cobalt oxides coated commercial Ba0.5Sr0.5Co0.8Fe0.2O3-delta as high performance cathode for low-temperature SOFCs2016Inngår i: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 191, s. 223-229Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In order to improve the catalytic activity of commercial Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) for low-temperature solid oxide fuel cells (LTSOFC) (300-600 degrees C), CoOx has been used to modify the commercial BSCF through a solution coating approach. Phase and morphology of samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy-dispersive spectrometry (EDS), respectively. BSCF with 10 wt% CoOx exhibited an improved conductivity of 44 S/cm, and achieved a peak power density of 463 mW/cm(2) at 550 degrees C for LTSOFC, which is a 100% enhancement than that with the BSCF cathode. The cathode oxygen reduction reaction (ORR) promoted by CoOx and enhanced device performance mechanism have been proposed. This work provides a new way for the exploitation of high effective cathode materials for LTSOFCs.

  • 9.
    He, Yunjuan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Li, Gen
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Hwang, Ki-Hwan
    Claesson, Per Martin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Nano-scale mechanical and wear properties of a corrosion protective coating reinforced by cellulose nanocrystals: initiation of coatingManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Organic coatings are commonly used for protection of substrate surfaces like metals and wood. In most cases they fulfil their purpose by acting as a barrier against unwanted substances such as oxygen, water or corrosive ions. However, with time coatings fail due to degradation caused by chemical reactions or wear by wind, water, impact of solid particles or sliding motions against other solid objects. In this work we focus on a nanocomposite coating having a hydroxyacrylate-melamine matrix and being reinforced by a small amount (0.5 wt.%) of cellulose nanocrystals. This nanocomposite is of interest as it has shown favourable corrosion protection properties on carbon steel. Here we investigate the nanomechanical and nanowear properties of the coating in air and in water, and we also explore how these properties are affected by exposure to a corrosive 0.1 M NaCl solution. Our data show that the nanomechanical properties of the coating surface is strongly affected by the environment (air or water), and that exposure to the corrosive solution affects the coating surface well before any deterioration of the corrosion protective properties are found. We suggest that our experimental methodology constitutes a powerful way to investigate and understand the initiation of coating degradation.

  • 10.
    Xia, Chen
    et al.
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi. Hubei Collaborative Innovation Center for Advanced Materials, Faculty of Physics and Electronic Technology, Hubei University, Wuhan, Hubei, China.
    Wang, Baoyuan
    Hubei Collaborative Innovation Center for Advanced Materials, Faculty of Physics and Electronic Technology, Hubei University, Wuhan, Hubei, China.
    Ma, Y.
    Department of Applied Physics, Aalto University, Aalto, Espoo, FI-00076, Finland.
    Cai, Y.
    Department of Engineering Sciences, Ångström Laboratory, Uppsala University, Uppsala, Sweden.
    Afzal, Muhammad
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik.
    Liu, Y.
    Hubei Collaborative Innovation Center for Advanced Materials, Faculty of Physics and Electronic Technology, Hubei University, Wuhan, Hubei 430062, China.
    He, Yunjuan
    Hubei Collaborative Innovation Center for Advanced Materials, Faculty of Physics and Electronic Technology, Hubei University, Wuhan, Hubei 430062, China.
    Zhang, W.
    Hubei Collaborative Innovation Center for Advanced Materials, Faculty of Physics and Electronic Technology, Hubei University, Wuhan, Hubei 430062, China.
    Dong, W.
    Hubei Collaborative Innovation Center for Advanced Materials, Faculty of Physics and Electronic Technology, Hubei University, Wuhan, Hubei 430062, China.
    Li, J.
    Nanjing Yunna Nanotech Lth., Heyan Road 271, Nanjing, 210037, China.
    Zhu, Bin
    KTH, Skolan för industriell teknik och management (ITM), Energiteknik, Kraft- och värmeteknologi. Hubei Collaborative Innovation Center for Advanced Materials, Faculty of Physics and Electronic Technology, Hubei University, Wuhan, Hubei, China.
    Industrial-grade rare-earth and perovskite oxide for high-performance electrolyte layer-free fuel cell2016Inngår i: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 307, s. 270-279Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the present work, we report a composite of industrial-grade material LaCePr-oxide (LCP) and perovskite La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) for advanced electrolyte layer-free fuel cells (EFFCs). The microstructure, morphology, and electrical properties of the LCP, LSCF, and LCP-LSCF composite were investigated and characterized by XRD, SEM, EDS, TEM, and EIS. Various ratios of LCP to LSCF in the composite were modulated to achieve balanced ionic and electronic conductivities. Fuel cell with an optimum ratio of 60 wt% LCP to 40 wt% LSCF reached the highest open circuit voltage (OCV) at 1.01 V and a maximum power density of 745 mW cm-2 at 575°C, also displaying a good performance stability. The high performance is attributed to the interfacial mechanisms and electrode catalytic effects. The findings from the present study promote industrial-grade rare-earth oxide as a promising new material for innovative low temperature solid oxide fuel cell (LTSOFC) technology.

1 - 10 of 10
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf