kth.sePublications
Change search
Refine search result
1 - 47 of 47
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Banerjee, Indradumna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Salih, Tagrid
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Ramachandraiah, Harisha
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Erlandsson, J.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Petterson, T.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Silva, AC
    Karlsson, M
    Russom, Aman
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    LDH based neonatal diagnostics on a low-cost slipdisc based sample preparation platform.2016Conference paper (Refereed)
    Abstract [en]

    INTRODUCTION

    Slipdisc is developed as a sample preparation platform based on slipchip technology [1], using a handwinded clockwork mechanism allowing sample processing from one spot to another with defined precision without the need for sophisticated tools or alignment (Fig.1). An ordinary smartphone or camera can be used to image and analyse the results making it an ideal tool for resource limited settings. Here, we demonstrate a bioassay for detecting LDH (Fig.2), a crucial enzyme found in all living cells which leaks out when the cellular membrane is damaged. This makes LDH a biomarker for several medical conditions in newborns, such as Ozkiraz-13, necrotizing enterocolitis (NEC), and Asphyxia.

    EXPERIMENTAL

    For assembling the slipdisc optically transparent, robust and disposable CD like polycarbonate discs were used with superhydrophobic coating on all except the embedded microfluidic channels. For the LDH assay, heparinized plasma samples were spiked with 7 different concentrations of the LDH enzyme (Lee Biosolutions, USA). These concentrations ranged from clinically normal to abnormal concentrations and used to construct a standard curve for LDH enzyme.

    RESULTS AND DISCUSSION

    The ability of the SlipDisc to quantify LDH enzyme levels from plasma samples was evaluated (Fig.3). Using 7 different concentrations, a standard curve with clinically relevant LDH concentrations was obtained (Fig4). Image and data analyses, including linear regression and Pearson’s correlation, were completed using Image processing tool in Matlab.

    CONCLUSION

    We demonstrate a low-cost neonatal diagnostics platform for the detection of LDH from plasma using a novel SlipDisc platform. The SlipDisc can further be modified to separate plasma from whole blood samples in order to fully integrate the assay. Its simple operation and smartphone based detection capabilities make it an ideal device for point-of-care neonatal diagnostics.

    Download full text (pdf)
    fulltext
  • 2.
    Banerjee, Indradumna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Salih, Tagrid
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Ramachandraiah, Harisha
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Erlandsson, Johan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Pettersson, Torbjörn
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Araújo, A. C.
    Karlsson, M.
    Russom, Aman
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Slipdisc: A versatile sample preparation platform for point of care diagnostics2017In: RSC Advances, E-ISSN 2046-2069, Vol. 7, no 56, p. 35048-35054Article in journal (Refereed)
    Abstract [en]

    We report a microfluidic sample preparation platform called "Slipdisc" based on slipchip technology. Slipdisc is a rotational slipchip that uses a unique hand-wound clockwork mechanism for precise movement of specially fabricated polycarbonate discs. In operation, the microchannels and microchambers carved on the closely aligned microfluidic discs convert from continuous filled paths to defined compartments using the slip movement. The clockwork mechanism introduced here is characterised by a food dye experiment and a conventional HRP TMB reaction before measuring lactate dehydrogenase (LDH) enzyme levels, which is a crucial biomarker for neonatal diagnostics. The colorimetry based detection of LDH was performed with an unmodified camera and an image analysis procedure based on normalising images and observing changes in red channel intensity. The analysis showed a close to unity coefficient of determination (R2 = 0.96) in detecting the LDH concentration when compared with a standard Chemical Analyser, demonstrating the excellent performance of the slipdisc platform with colorimetric detection. The versatile point of care sample preparation platform should ideally be suited for a multitude of applications at resource-limited settings.

  • 3.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    CONTROLLED ASSEMBLY AND FUNCTIONALISATION OF CELLULOSE-BASED MATERIALS2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The environmental effects caused by the use of fossil-based resources have intensified and driven society and research towards new materials and processes that utilise renewable resources. Within the development of new materials, wood has been identified as a raw-material from which high performing materials can be derived. One such material is cellulose nanofibrils (CNFs) which are capable of replacing several currently used fossil-based materials. However, for CNFs to exhibit the required material properties they need to be chemically or physically modified. This means that the properties of the CNFs can be specifically adapted to fit the demand in particular areas, for example electrical energy storage. In these applications it is the mechanical properties; the large, easily functionalised surface and ability to be moulded into 3D shapes that make CNFs a highly interesting raw material.

    This thesis explores the formation and functionalisation of CNF- and fibre-based materials and their novel use in applications such as energy storage. The wet stability of the materials was achieved by crosslinking and ice templating the fibrils by a novel freezing procedure, which makes it possible to avoid the use of freeze-drying and subsequent crosslinking. Using colloidal probe atomic force microscopy adhesion measurements, hemiacetals were shown to be formed between the aldehyde-containing fibrils when they are brought into molecular contact, for example during ice templating. Hemiacetal crosslinked aerogels have been shaped and functionalised to demonstrate their application as biomimetic structural composites, electrical circuits and electrical cells. In addition, crosslinked, light-weight 3D fibre networks were prepared with á similar chemistry by a self-assembly process of pulp fibres. These networks could be dried under ambient conditions and the materials formed were wet-stable due to the hemiacetal crosslinks formed in the fibre–fibre contacts, which provided the networks with excellent mechanical properties and shape recovery capacity in water.

    Finally, using a newly developed polyampholyte and mixing it with CNFs, heterofunctional composite films and aerogels could be prepared. By activating crosslinkable groups in these composite materials, they were able to undergo further water based chemical functionalisation. In this highly dispersed state, the composite could be irreversibly crosslinked by a hydrothermal treatment to create transparent, low solid content hydrogels.

    Download full text (pdf)
    CONTROLLED ASSEMBLY AND FUNCTIONALISATION OF CELLULOSE-BASED MATERIALS
  • 4.
    Erlandsson, Johan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Marais, Andrew
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Granberg, Hjalmar
    RISE Bioecon, Papermaking & Packaging, Box 5604, SE-11486 Stockholm, Sweden..
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils2019In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, no 2, p. 728-737Article in journal (Refereed)
    Abstract [en]

    Chemically cross-linked highly porous nano cellulose aerogels with complex shapes have been prepared using a freeze-linking procedure that avoids common post activation of cross-linking reactions and freeze-drying. The aerogel shapes ranged from simple geometrical three-dimensional bodies to swirls and solenoids. This was achieved by molding or extruding a periodate oxidized cellulose nanofibril (CNF) dispersion prior to chemical cross-linking in a regular freezer or by reshaping an already prepared aerogel by plasticizing the structure in water followed by reshaping and locking the aerogel into its new shape. The new shapes were most likely retained by new cross-links formed between CNFs brought into contact by the deformation during reshaping. This self-healing ability to form new bonds after plasticization and redrying also contributed to the mechanical resilience of the aerogels, allowing them to be cyclically deformed in the dry state, reswollen with water, and redried with good retention of mechanical integrity. Furthermore, by exploiting the shapeability and available inner structure of the aerogels, a solenoid-shaped aerogel with all surfaces coated with a thin film of conducting polypyrrole was able to produce a magnetic field inside the solenoid, demonstrating electromagnetic properties. Furthermore, by biomimicking the porous interior and stiff exterior of the beak of a toucan bird, a functionalized aerogel was created by applying a 300 mu m thick stiff wax coating on its molded external surfaces. This composite material displayed a 10-times higher elastic modulus compared to that of the plain aerogel without drastically increasing the density. These examples show that it is possible to combine advanced shaping with functionalization of both the inner structure and the surface of the aerogels, radically extending the possible use of CNF aerogels.

  • 5.
    Erlandsson, Johan
    et al.
    KTH.
    Granberg, Hjalmar
    Innventia AB, Stockholm, Sweden..
    Sandberg, Mats
    Acreo Swedish ICT AB, Norrkoping, Sweden..
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Nanocellulose aerogel beads: Structurable and printable energy storage2017In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Article in journal (Other academic)
  • 6.
    Erlandsson, Johan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Granberg, Hjalmar
    Innventia AB, Stockholm, Sweden..
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Macro- and mesoporous spherical nanocellulose beads for use in energy storage devices2016In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 251Article in journal (Other academic)
  • 7.
    Erlandsson, Johan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    López Durán, Veronica
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Granberg, Hjalmar
    Innventia AB.
    Sandberg, Mats
    Acreo Swedish ICT AB.
    Larsson, Per A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Macro- and mesoporous nanocellulose beads for use in energy storage devices2016In: APPLIED MATERIALS TODAY, ISSN 2352-9407, Vol. 5, p. 246-254Article in journal (Refereed)
    Abstract [en]

    Chemically cross-linked, wet-stable cellulose nanofibril (CNF) aerogel beads were fabricated using a novel procedure. The procedure facilitated controlled production of millimetre-sized CNF aerogel beads without freeze-drying or critical point drying, while still retaining a highly porous structure with low density. The aerogel beads were mechanically robust in the dry state, supporting loads of 1.3 N at 70% compression, even after being soaked in water and re-dried. Furthermore, they displayed both a good stability in water and a remarkably good shape recovery after wet compression. Owing to the stability in water, the entire surface of the highly porous aerogel beads could be successfully functionalized with polyelectrolytes and carboxyl-functionalized single-wall carbon nanotubes (CF-SWCNTs) using the Layer-by-Layer technique, introducing a significant electrical conductivity (1.6 mS/cm) to the aerogel beads. The functionalized, electrically conducting aerogel beads could carry as much as 2 kA/cm(2) and act as electrodes in a supercapacitor displaying a stabilized charge storage capacity of 9.8 F/g after 50 charging-discharging cycles.

  • 8.
    Erlandsson, Johan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Pettersson, Torbjörn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Ingverud, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Granberg, H.
    Larsson, Per A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels2018In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 6, no 40, p. 19371-19380Article in journal (Refereed)
    Abstract [en]

    The underlying mechanism related to freezing-induced crosslinking of aldehyde-containing cellulose nanofibrils (CNFs) has been investigated, and the critical parameters behind this process have been identified. The aldehydes introduced by periodate oxidation allows for formation of hemiacetal bonds between the CNFs provided the fibrils are in sufficiently close contact before the water is removed. This is achieved during the freezing process where the cellulose components are initially separated, and the growth of ice crystals forces the CNFs to come into contact in the thin lamellae between the ice crystals. The crosslinked 3-D structure of the CNFs can subsequently be dried under ambient conditions after solvent exchange and still maintain a remarkably low density of 35 kg m-3, i.e. a porosity greater than 98%. A lower critical amount of aldehydes, 0.6 mmol g-1, was found necessary in order to generate a crosslinked 3-D CNF structure of sufficient strength not to collapse during the ambient drying. The chemical stability of the 3-D structure can be further enhanced by converting the hemiacetals to acetals by treatment with an alcohol under acidic conditions.

  • 9.
    Fan, Yanmiao
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Namata, Faridah
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Zhang, Yuning
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Self-Assembled Polyester Dendrimer/Cellulose Nanofibril Hydrogels with Extraordinary Antibacterial Activity2020In: Pharmaceutics, ISSN 1999-4923, E-ISSN 1999-4923, Vol. 12, no 12, article id 1139Article in journal (Refereed)
    Abstract [en]

    Cationic dendrimers are intriguing materials that can be used as antibacterial materials; however, they display significant cytotoxicity towards diverse cell lines at high generations or high doses, which limits their applications in biomedical fields. In order to decrease the cytotoxicity, a series of biocompatible hybrid hydrogels based on cationic dendrimers and carboxylated cellulose nanofibrils were easily synthesized by non-covalent self-assembly under physiological conditions without external stimuli. The cationic dendrimers from generation 2 (G2) to generation 4 (G4) based on trimethylolpronane (TMP) and 2,2-bis (methylol)propionic acid (bis-MPA) were synthesized through fluoride promoted esterification chemistry (FPE chemistry). FTIR was used to show the presence of the cationic dendrimers within the hybrid hydrogels, and the distribution of the cationic dendrimers was even verified using elemental analysis of nitrogen content. The hybrid hydrogels formed from G3 and G4 showed 100% killing efficiency towards Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) with bacterial concentrations ranging from 10(5) CFU/mL to 10(7) CFU/mL. Remarkably, the hybrid hydrogels also showed good biocompatibility most probably due to the incorporation of the biocompatible CNFs that slowed down the release of the cationic dendrimers from the hybrid hydrogels, hence showing great promise as an antibacterial material for biomedical applications.

    Download full text (pdf)
    fulltext
  • 10.
    Francon, Hugo
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Lopez Duran, Veronica
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Granberg, Hjalmar
    RISE Bioecon, Stockholm, Sweden..
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Novel method for producing formable low-density materials from self-assembled cellulose nanofibrils2018In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 11.
    Görür, Yunus Can
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Sethi, Jatin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Maddalena, L.
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Reid, Michael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Carosio, F.
    Larsson, Per A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Rapidly Prepared Nanocellulose Hybrids as Gas Barrier, Flame Retardant, and Energy Storage Materials2022In: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 5, no 7, p. 9188-9200Article in journal (Refereed)
    Abstract [en]

    Cellulose nanofibril (CNF) hybrid materials show great promise as sustainable alternatives to oil-based plastics owing to their abundance and renewability. Nonetheless, despite the enormous success achieved in preparing CNF hybrids at the laboratory scale, feasible implementation of these materials remains a major challenge due to the time-consuming and energy-intensive extraction and processing of CNFs. Here, we describe a scalable materials processing platform for rapid preparation (<10 min) of homogeneously distributed functional CNF-gibbsite and CNF-graphite hybrids through a pH-responsive self-assembly mechanism, followed by their application in gas barrier, flame retardancy, and energy storage materials. Incorporation of 5 wt % gibbsite results in strong, transparent, and oxygen barrier CNF-gibbsite hybrid films in 9 min. Increasing the gibbsite content to 20 wt % affords them self-extinguishing properties, while further lowering their dewatering time to 5 min. The strategy described herein also allows for the preparation of freestanding CNF-graphite hybrids (90 wt % graphite) that match the energy storage performance (330 mA h/g at low cycling rates) and processing speed (3 min dewatering) of commercial graphite anodes. Furthermore, these ecofriendly electrodes can be fully recycled, reformed, and reused while maintaining their initial performance. Overall, this versatile concept combines a green outlook with high processing speed and material performance, paving the way toward scalable processing of advanced ecofriendly hybrid materials. 

  • 12.
    Görür, Yunus Can
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Sethi, Jatin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Maddalena, Lorenza
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Reid, Michael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Carosio, Federico
    Politecn Torino, Dipartimento Sci Applicata & Tecnol, Alessandria Campus,Viale Teresa Michel 5, I-15121 Alessandria, Italy..
    Larsson, Per A.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Rapid Processing of Functional Hybrids via Reversible Self-Assembly of NanocellulosesManuscript (preprint) (Other academic)
  • 13.
    Görür, Yunus Can
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Sethi, Jatin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Maddalena, Lorenza
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Reid, Michael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Carosio, Federico
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Larsson, Per A.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Rapid processing of functional nanocellulose hybrids for gas barrier, flame retardant and energy storage materialsManuscript (preprint) (Other academic)
  • 14. Han, Shaobo
    et al.
    Ruoko, Tero -Petri
    Gladisch, Johannes
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Crispin, Xavier
    Fabiano, Simone
    Cellulose-Conducting Polymer Aerogels for Efficient Solar Steam Generation2020In: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 4, no 7, p. 2000004-Article in journal (Refereed)
    Abstract [en]

    Seawater desalination and wastewater purification technologies are the main strategies against the global fresh water shortage. Among these technologies, solar-driven evaporation is effective in extracting fresh water by efficiently exploiting solar energy. However, building a sustainable and low-cost solar steam generator with high conversion efficiency is still a challenge. Here, pure organic aerogels comprising a cellulose scaffold decorated with an organic conducting polymer absorbing in the infrared are employed to establish a high performance solar steam generator. The low density of the aerogel ensures minimal material requirements, while simultaneously satisfying efficient water transport. To localize the absorbed solar energy and make the system floatable, a porous floating and thermal-insulating foam is placed between the water and the aerogel. Thanks to the high absorbance of the aerogel and the thermal-localization performance of the foam, the system exhibits a high water evaporation rate of 1.61 kg m−2 h−1 at 1 kW m−2 under 1 sun irradiation, which is higher than most reported solar steam generation devices. 

  • 15.
    Ingverud, Tobias
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Dendritic Polyampholyte-Assisted Formation of Functional Cellulose Nanofibril Materials2020In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 21, no 7, p. 2856-2863Article in journal (Refereed)
    Abstract [en]

    A new platform of functional hybrid materials from anionically charged high-aspect-ratio cellulose nanofibrils (CNFs) and a dendritic polyampholyte, Helux, is herein proposed. The polyampholytic character of Helux enabled facile and efficient nanoscale mixing with the CNFs, and the resulting composite mixtures of CNFs and Helux displayed thixotropic behavior and formed physical and reversibly cross-linked gels when left unperturbed for short spans of time. The gel could be chemically cross-linked into self-supporting solid hydrogels containing impressive water contents of 99.6% and a storage modulus of 1.8 kPa by thermal activation. Non-cross-linked mixtures of CNF/Helux were assembled into composites, such as films by solvent casting and aerogels with densities as low as 4 kg/m(3) by lyophilizing ice-templated CNF/Helux mixtures. The resulting materials exhibited excellent wet stability due to the heat-activated cross-linking and were readily available for postfunctionalization via amidation chemistry using Helux-accessible amines in aqueous conditions. The mechanical performance of the films was not jeopardized by the addition of Helux. Additionally, by varying the amount of Helux, the compressive elastic modulus of aerogels was tunable in both the non-cross-linked and cross-linked states. The fast and efficient nanoscale mixing of anionic CNFs and a polymer containing cationic groups is unique, novel, and promising as a functional material platform. Sustainable CNFs guided by heterofunctional dendritic polyampholytes are envisaged to act as a pillar toward high-performance applications, including biomedicine and biomaterials.

  • 16.
    Ingverud, Tobias
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    The combination of a dendritic polyampholyte and cellulose nanofibrils – a new type of functional materialManuscript (preprint) (Other academic)
  • 17.
    Kaldéus, Tahani
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Nordenström, Malin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Redispersibility properties of dried cellulose nanofibrils - influence on structure and mechanical properties2019Manuscript (preprint) (Other academic)
  • 18.
    Lander, Sanna
    et al.
    Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden; BillerudKorsnäs Gruvön, Grums, SE-664 33, Sweden.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Vagin, Mikhail
    Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden.
    Gueskine, Viktor
    Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden.
    Korhonen, Leena
    BillerudKorsnäs Frövi, Frövi, SE-718 80, Sweden.
    Berggren, Magnus
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Crispin, Xavier
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-601 74, Sweden.
    Sulfonated Cellulose Membranes: Physicochemical Properties and Ionic Transport versus Degree of Sulfonation2022In: Advanced Sustainable Systems, E-ISSN 2366-7486, Vol. 6, no 11, article id 2200275Article in journal (Refereed)
    Abstract [en]

    The next generation of green ion selective membranes is foreseen to be based on cellulosic nanomaterials with controllable properties. The introduction of ionic groups into the cellulose structure via chemical modification is one strategy to obtain desired functionalities. In this work, bleached softwood fibers are oxidatively sulfonated and thereafter homogenized to liberate the cellulose nanofibrils (CNFs) from the fiber walls. The liberated CNFs are subsequently used to prepare and characterize novel cellulose membranes. It is found that the degree of sulfonation collectively affects several important properties of the membranes via the density of fixed charged groups on the surfaces of the CNFs, in particular the membrane morphology, water uptake and swelling, and correspondingly the ionic transport. Both ionic conductivity and cation transport increase with the increased level of sulfonation of the starting material. Thus, it is shown that the chemical modification of the CNFs can be used as a tool for precise and rational design of green ion selective membranes that can replace expensive conventional fluorinated ionomer membranes.

  • 19.
    Lander, Sanna
    et al.
    Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden; BillerudKorsnäs Gruvön, SE-664 33, Grums, Sweden.
    Vagin, Mikhail
    Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden.
    Gueskine, Viktor
    Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Boissard, Yselaure
    BillerudKorsnäs Frövi, SE-718 80, Frövi, Sweden.
    Korhonen, Leena
    BillerudKorsnäs Frövi, SE-718 80, Frövi, Sweden.
    Berggren, Magnus
    Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden; Wallenberg Wood Science Centre, Linköping, Sweden.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Technology, SE-100 44, Stockholm, Sweden; Wallenberg Wood Science Centre, Fibre and polymer Technology, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
    Crispin, Xavier
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden.
    Sulfonated Cellulose Membranes Improve the Stability of Aqueous Organic Redox Flow Batteries2022In: Advanced Energy and Sustainability Research, E-ISSN 2699-9412, Vol. 3, no 9, article id 2200016Article in journal (Refereed)
    Abstract [en]

    The drawbacks of current state-of-the-art selective membranes, such as poor barrier properties, high cost, and poor recyclability, limit the large-scale deployment of electrochemical energy devices such as redox flow batteries (RFBs) and fuel cells. In recent years, cellulosic nanomaterials have been proposed as a low-cost and green raw material for such membranes, but their performance in RFBs and fuel cells is typically poorer than that of the sulfonated fluoropolymer ionomer membranes such as Nafion. Herein, sulfonated cellulose nanofibrils densely cross-linked to form a compact sulfonated cellulose membrane with limited swelling and good stability in water are used. The membranes possess low porosity and excellent ionic transport properties. A model aqueous organic redox flow battery (AORFB) with alizarin red S as negolyte and tiron as posolyte is assembled with the sulfonated cellulose membrane. The performance of the nanocellulose-based battery is superior in terms of cyclability in comparison to that displayed by the battery assembled with commercially available Nafion 115 due to the mitigation of crossover of the redox-active components. This finding paves the way to new green organic materials for fully sustainable AORFB solutions.

  • 20.
    Larsson, Per
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Erlandsson, Johan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    López Durán, Veronica
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Henschen, Jonatan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Tchang Cervin, Nicholas
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. Innventia AB, Stockholm, Sweden.
    Al-Ansari, Zeinab
    Univ Copenhagen, Dept Pharm, Copenhagen, Denmark..
    Svagan, Anna Justina
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Crosslinking as a facilitator for novel (nano)cellulose-based applications2017In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Article in journal (Other academic)
  • 21.
    López Durán, Veronica
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Larsson, Per A.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Novel, Cellulose-Based, Lightweight, Wet-Resilient Materials with Tunable Porosity, Density, and Strength2018In: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 6, no 8, p. 9951-9957Article in journal (Refereed)
    Abstract [en]

    Highly porous materials with low density were developed from chemically modified cellulose fibers using solvent-exchange and air drying. Periodate oxidation was initially performed to introduce aldehydes into the cellulose chain, which were then further oxidized to carboxyl groups by chlorite oxidation. Low-density materials were finally achieved by a second periodate oxidation under which the fibers self-assembled into porous fibrous networks. Following a solvent exchange to acetone, these networks could be air-dried without shrinkage. The properties of the materials were tuned by mechanical mixing with a high intensity mixer for different times prior to the second periodate oxidation, which resulted in porosities between 94.4% and 96.3% (i.e., densities between 54 and 82 kg/m(3)). The compressive strength of the materials was between 400 and 1600 kPa in the dry state and between 20 and 50 kPa in the wet state. It was also observed that in the wet state the fiber networks could be compressed up to 80% while still being able to recover their shape. These networks are highly interesting for use in different types of absorption products, and since they also have a high wet integrity, they can be modified with physical methods for different high-value-added end-use applications.

  • 22. López Durán, Verónica
    et al.
    Erlandsson, Johan
    Wågberg, Lars
    KTH, Superseded Departments (pre-2005), Fibre and Polymer Technology.
    Larsson, Per A.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Novel cellulose-based light weight, wet resilient materials with tunable porosity, density and strengthManuscript (preprint) (Other academic)
  • 23.
    Marais, Andrew
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Söderberg, Daniel
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Coaxial Spinning of Oriented Nanocellulose Filaments and Core-Shell Structures for Interactive Materials and Fiber-Reinforced Composites2020In: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 3, no 10, p. 10246-10251Article in journal (Refereed)
    Abstract [en]

    Spinning filaments from nature's own high-performance building block, cellulose nanofibrils (CNFs), requires additional considerations compared to conventional manmade fibers commonly made from polymer solutions or melts. We herein utilize the colloidal properties of the highly anisotropic CNFs and demonstrate the preparation of core-shell filaments using a coaxial nozzle. The nanofibril dispersion is passed through the core channel, and the sheath flow consists of a functionalizing solution. The flow rates of the suspensions/solutions are carefully controlled to create an extensional flow at the exit of the nozzle, allowing orientation of the nanofibers into continuous filaments that are then extruded into a fixation bath before drying. The self-assembly mechanism relies on the control of the colloidal stability of carboxymethylated CNFs altered by pH or ionic strength changes. In the simplest approach, HCl is used in the sheath flow to assemble the accelerated CNFs in the core flow, leading to an irreversible association of the nanofibers into an oriented filament. The filaments are continuous and homogeneous, with a dry diameter of approximately 20 mu m. The orientation of the CNFs in the spun filament was investigated by wide-angle X-ray scattering, and an orientation index of 0.79 is achieved. The tensile strength of the filaments is 431 +/- 89 MPa, the Young's modulus is 19.2 +/- 3.4 GPa, and the strain at break is 7.4 +/- 1.3%. Core-shell structures are also prepared by incorporating active materials such as carbon nanotubes in the sheath flow. The resulting filaments show a thin shell of a conductive nanotube network covering a core of cellulose nanofibrils, and the conductivity of such structures reaches 1000 S cm(-1), opening up opportunities for composites and interactive materials.

  • 24. Naderi, A.
    et al.
    Koschella, A.
    Heinze, T.
    Shih, K. C.
    Nieh, M. P.
    Pfeifer, A.
    Chang, C. C.
    Erlandsson, Johan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Corrigendum to “Sulfoethylated nanofibrillated cellulose: Production and properties” [Carbohydr. Polym. 169 (2017) 515–523] (S0144861717304101) (10.1016/j.carbpol.2017.04.026))2018In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 179Article in journal (Refereed)
    Abstract [en]

    The author Ali Naderi regrets the wrong information given with regard to his affiliation. The author would like to apologise for any inconvenience caused.

  • 25. Naderi, Ali
    et al.
    Erlandsson, Johan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Sundstrom, Jonas
    Lindstrom, Tom
    Enhancing the properties of carboxymethylated nanofibrillated cellulose by inclusion of water in the pre-treatment process2016In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 31, no 3, p. 372-378Article in journal (Refereed)
    Abstract [en]

    Well-delaminated carboxymethylated nanofibrillated cellulose (NFCCarb) systems are prerequisites for many industrial applications. In this study it was shown that addition of water, in a narrow range, not only improves the efficiency of the carboxymethylation process, but also enhances the degree of delamination of NFCCarb, which leads to improved properties. The observations were proposed to be due to a more homogeneous distribution of the charged groups, brought about by the higher swelling of fibers with inclusion of water.

  • 26. Naderi, Ali
    et al.
    Koschella, Andreas
    Heinze, Thomas
    Shih, Kuo-Chih
    Nieh, Mu-Ping
    Pfeifer, Annett
    Chang, Chung-Chueh
    Erlandsson, Johan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Sulfoethylated nanofibrillated cellulose: Production and properties2017In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 169, p. 515-523Article in journal (Refereed)
    Abstract [en]

    Sulfoethylated nanofibrillated cellulose (NFCsulf) was produced by an industrially relevant process. The properties of the NFCsulf were compared with those of carboxymethylated nanofibrillated cellulose (NFCcarb), which has been identified as an attractive NFC for several industrial applications. The investigations revealed that NFCsulf is characterized by a higher degree of fibrillation and has superior redispersion properties. Furthermore, NFCsulf displays higher stability in varying pH values as compared to NFCcarb. Hence, NFCsulf may be a more attractive alternative than NFCcarb in applications such as rheological modifiers or adsorbing components in personal care products, in which the performance of NFC must remain unaffected in varying ambient conditions. The superior properties of NFCsulf compared to NFCcarb were proposed to be due to the combination of the unique chemical characteristics of the sulfoethylated reagent, and the larger size of the sulfonate group compared to the carboxymethyl group.

  • 27.
    Naderi, Ali
    et al.
    Innventia AB, Drottning Kristinasv 61, S-11486 Stockholm, Sweden..
    Larsson, Per Tomas
    Innventia AB, Drottning Kristinasv 61, S-11486 Stockholm, Sweden..
    Stevanic, Jasna S.
    Innventia AB, Drottning Kristinasv 61, S-11486 Stockholm, Sweden..
    Lindström, Tom
    Innventia AB, Drottning Kristinasv 61, S-11486 Stockholm, Sweden..
    Erlandsson, Johan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Effect of the size of the charged group on the properties of alkoxylated NFCs2017In: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 24, no 3, p. 1307-1317Article in journal (Refereed)
    Abstract [en]

    The impact of the size of the charged group on the properties of alkoxylated NFC was studied by two chloroalkyl acid reagents. It was found that the employment of the larger 2-chloropropionic acid reagent leads to improved properties, e.g. higher fraction of nano-sized materials, and significantly better redispersion as compared to when the smaller monochloroacetic acid was employed. The differences in the impacts of the different reagents were hypothesized to be due to a more efficient disruption of the cohesion between the nanofibrils when a larger charged group was employed.

  • 28.
    Naderi, Ali
    et al.
    Innventia AB, Stockholm, Sweden..
    Larsson, Tomas
    Innventia AB, Stockholm, Sweden..
    Srndovi, Jasna Stevanic
    Innventia AB, Stockholm, Sweden..
    Lindström, Tom
    Innventia AB, Stockholm, Sweden..
    Erlandsson, Johan
    KTH. Royal Inst Technol, Stockholm, Sweden..
    Effect of the size of the charged group on the properties of alkoxylated NFCs2017In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Article in journal (Other academic)
  • 29.
    Naderi, Ali
    et al.
    Innventia AB, Box 5604, Stockholm, SE-114 86, Sweden.
    Lindstrom, Tom
    Innventia AB, Box 5604, Stockholm, SE-114 86, Sweden.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Sundstrom, Jonas
    Innventia AB, Box 5604, Stockholm, SE-114 86, Sweden.
    Flodberg, Goran
    Innventia AB, Box 5604, Stockholm, SE-114 86, Sweden.
    A comparative study of the properties of three nanofibrillated cellulose systems that have been produced at about the same energy consumption levels in the mechanical delamination step2016In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 31, no 3, p. 364-371Article in journal (Refereed)
    Abstract [en]

    The viscosity, tensile strength-and barrier properties of enzymatically pre-treated-(NFCEnz), carboxymethylated-(NFCCarb) and carboxymethyl cellulose (CMC) modified (NFCCMC) nanofibrillated cellulose systems (NFC) that have been produced at about the same energy consumption levels in the mechanical delamination step in the manufacturing of the different NFCs are reported. It was found that NFCEnz and NFCCMC are characterized by low degrees of fibrillation. Carboxymethylated NFC displayed superior tensile strength properties, lower fiber fragment content and a higher viscosity when compared to NFCEnz and NFCCMC. Interestingly, NFCEnz displayed equal or better barrier properties compared to the highly fibrillated NFCCarb.

  • 30. Naderi, Ali
    et al.
    Lindstrom, Tom
    Weise, Christoph F.
    Flodberg, Goren
    Sundstrom, Jonas
    Junel, Kristina
    Erlandsson, Johan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Runebjork, AnneMarie
    Phosphorylated nanofibrillated cellulose: production and properties2016In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 31, no 1, p. 20-29Article in journal (Refereed)
    Abstract [en]

    Phosphate functionalized nanofibrillated cellulose (NFC) was produced through an industrially attractive process, by reacting wood pulp with a phosphate containing salt, followed by mechanical delamination through microfluidization. The degrees of delamination of the phosphorylated NFCs (judged by among others AFM-imaging, rheological studies and tensile strength measurements on NFC films) were found to improve with increasing functionalization of the pulp and number of microfluidization-passes. The NFC systems were found to display similar characteristics as other well-known NFC systems. Interestingly, however, the sufficiently delaminated phosphorylated NFCs exhibited significantly lower oxygen permeability values (at RH 50%) than the published values of several well-known highly delaminated NFC systems. The potential application of the phosphorylated NFC in packaging applications can hence be envisaged.

  • 31. Naderi, Ali
    et al.
    Lindström, Tom
    Sundström, Jonas
    Pettersson, Torbjörn
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Flodberg, Göran
    Erlandsson, Johan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Microfluidized carboxymethyl cellulose modified pulp: a nanofibrillated cellulose system with some attractive properties2015In: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 22, no 2, p. 1159-1173Article in journal (Refereed)
    Abstract [en]

    A method (Ankerfors and Lindstrom in Method for providing nanocellulose comprising modified cellulose fibers, 2009) was employed to physically attach anionic carboxymethyl cellulose (CMC) chains onto wood pulp, upon which it was fibrillated by a microfluidizer-type homogenizer at high applied pressures and at dilute conditions [< 3 % (w/w)]. It was found that the CMC-modified pulp can be fibrillated at the same consistencies as many of the commercially available NFC products. The NFC manufacturing process was also deemed to be energy efficient, as it lacked the need for mechanical pre-treatment, which is often a prerequisite for the production of many existing NFC systems. The CMC-based NFC was studied with respect to the rheological characteristics, and was also characterized using AFM-imaging. Further, The NFC was made into films, and its tensile strength was determined together with its barrier properties. In general, the rheological characteristics (viscosity and storage modulus) together with the tensile strength and oxygen barrier properties of the films were improved with increasing the number of passes through the microfluidizer. The fibrillated CMC-modified pulp was found to be as efficient as other NFC systems when employed as dry strength additive. The employment of the investigated material, which can be produced at acceptable costs and through environmentally benign and industrially relevant processes can, hence, potentially lead to significant future savings in the energy consumption levels in the paper and cardboard manufacturing processes, which have been recognized as major application areas of NFC products.

  • 32.
    Namata, Faridah
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Sanz del Olmo, Natalia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Molina, Noemi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Malkoch, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Cellulose Nanofibril Hydrogels Prepared with Dendritic-Linear-Dendritic Block CopolymersManuscript (preprint) (Other academic)
  • 33.
    Nordenström, Malin
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Kaldéus, Tahani
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Pettersson, Torbjörn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Redispersion Strategies for Dried Cellulose Nanofibrils2021In: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 9, no 33, p. 11003-11010Article in journal (Refereed)
    Abstract [en]

    The potential for large-scale applications of cellulose nanofibrils (CNFs) is limited by the high water content of the starting material, which leads to high transportation costs and undesirable environmental impact. However, drying of CNFs results in loss of their nanoscopic dimensions leading to deterioration of their unique inherent mechanical properties. Herein, thorough redispersion studies of both fundamental and applied nature have been conducted in order to evaluate the effect of charge, redispersing agent, and drying method. Freeze-dried CNF dispersions were successfully redispersed by either increasing the charge density or adding redispersing agents. The greatest effect on redispersibility was achieved with fractionated LignoBoost lignin as redispersing agent, and this is attributed to steric repulsion during water removal and reduced CNF adhesion. Furthermore, the results unexpectedly show that redispersion is easier when the CNFs are dried in the form of nanopapers. By using this approach, excellent redispersibility was achieved even without a redispersing agent. Nanopapers formed from the redispersed CNFs was found to have essentially the same mechanical properties as those made from never-dried CNFs. Hence, this work suggests solutions for making CNFs viable for large-scale application while maintaining their nanoscale dimensions and their ability to create nanopapers with excellent mechanical properties.

  • 34.
    Nordenström, Malin
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Kaldéus, Tahani
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Pettersson, Torbjörn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Redispersion strategies for dried cellulose nanofibrilsManuscript (preprint) (Other academic)
  • 35.
    Petrou, Georgia
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Jansson, Ronnie
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Högqvist, Mark
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Hedhammar, My
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Crouzier, Thomas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Genetically Engineered Mucoadhesive Spider Silk2018In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 19, no 8, p. 3268-3279Article in journal (Refereed)
    Abstract [en]

    Mucoadhesion is defined as the adhesion of a material to the mucus gel covering the mucous membranes. The mechanisms controlling mucoadhesion include nonspecific electrostatic interactions and specific interactions between the materials and the mucins, the heavily glycosylated proteins that form the mucus gel. Mucoadhesive materials can be used to develop mucosal wound dressings and noninvasive transmucosal drug delivery systems. Spider silk, which is strong, biocompatible, biodegradable, nontoxic, and lightweight would serve as an excellent base for the development of such materials. Here, we investigated two variants of the partial spider silk protein 4RepCT genetically engineered in order to functionalize them with mucoadhesive properties. The pLys-4RepCT variant was functionalized with six cationically charged lysines, aiming to provide nonspecific adhesion from electrostatic interactions with the anionically charged mucins, while the hGal3-4RepCT variant was genetically fused with the Human Galectin-3 Carbohydrate Recognition Domain which specifically binds the mucin glycans Gal beta 1-3GlcNAc and Gal beta 1-4GlcNAc. First, we demonstrated that coatings, fibers, meshes, and foams can be readily made from both silk variants. Measured by the adsorption of both bovine submaxillary mucin and pig gastric mucin, the newly produced silk materials showed enhanced mucin binding properties compared with materials of wild-type (4RepCT) silk. Moreover, we showed that pLys-4RepCT silk coatings bind mucins through electrostatic interactions, while hGal3-4RepCT silk coatings bind mucins through specific glycan-protein interactions. We envision that the two new mucoadhesive silk variants pLys-4RepCT and hGal3-4RepCT, alone or combined with other biofunctional silk proteins, constitute useful new building blocks for a range of silk protein-based materials for mucosal treatments.

  • 36.
    Pettersson, Torbjörn
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Larsson, Per
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    On the mechanism of freeze-induced crosslinking of aerogels made from periodate-oxidised cellulose nanofibrils2018In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 37.
    Reid, Michael S.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden..
    Incorporation of cellulose nanocrystals into polyamide nanocomposites with controlled architecture via interfacial polymerization2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
    Abstract [en]

    The widespread use of renewable nanomaterials has been limited due to poor integration with conventional polymer matrices. Often, chemical and physical surface modificationsare implemented to improve compatibility, however this comes with environmental and economic cost. This work demonstrates that renewable nanomaterials, specifically cellulose nanocrystals (CNCs), can be utilized in their unmodified state and presents a simple and versatile, one-step method to produce polyamide/CNC nanocomposites with unique Janus-like properties. Nanocomposites in the form of films, fibres and capsules areprepared by dispersing as prepared CNCs in the aqueous phase prior to the interfacial polymerization of aromatic diamines and acyl chlorides. The diamines in the aqueous phase not only serve as a monomer for polymerization but, additionally adsorb to, and promote the incorporation of CNCs into the nanocomposite. Regardless of the architecture CNCs are only present along the surfacefacing the aqueous phaseresulting in materials with unique, Janus-likewetting behaviour and potential applications in filtration, separations, drug delivery and advanced fibres. 

    Download full text (pdf)
    Interfacial Polymerization of Cellulose Nanocrystal Polyamide Janus Nanocomposites with Controlled Architectures
  • 38.
    Reid, Michael S.
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Interfacial Polymerization of Cellulose Nanocrystal Polyamide Janus Nanocomposites with Controlled Architectures2019In: ACS Macro Letters, E-ISSN 2161-1653, Vol. 8, no 10, p. 1334-1340Article in journal (Refereed)
    Abstract [en]

    The widespread use of renewable nanomaterials has been limited due to poor integration with conventional polymer matrices. Often, chemical and physical surface modifications are implemented to improve compatibility, however, this comes with environmental and economic cost. This work demonstrates that renewable nanomaterials, specifically cellulose nanocrystals (CNCs), can be utilized in their unmodified state and presents a simple and versatile, one-step method to produce polyamide/CNC nanocomposites with unique Janus-like properties. Nanocomposites in the form of films, fibers, and capsules are prepared by dispersing as-prepared CNCs in the aqueous phase prior to the interfacial polymerization of aromatic diamines and acyl chlorides. The diamines in the aqueous phase not only serve as a monomer for polymerization, but additionally, adsorb to and promote the incorporation of CNCs into the nanocomposite. Regardless of the architecture, CNCs are only present along the surface facing the aqueous phase, resulting in materials with unique, Janus-like wetting behavior and potential applications in filtration, separations, drug delivery, and advanced fibers.

    Download full text (pdf)
    fulltext
  • 39.
    Tian, Weiqian
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    VahidMohammadi, Armin
    Auburn Univ, Dept Mech & Mat Engn, Auburn, AL 36849 USA..
    Reid, Michael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wang, Zhen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH Royal Inst Technol, Dept Fibre & Polymer Technol, Tekn Ringen 56, S-10044 Stockholm, Sweden..
    Ouyang, Liangqi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Pettersson, Torbjörn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Beidaghi, Majid
    Auburn Univ, Dept Mech & Mat Engn, Auburn, AL 36849 USA..
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose2019In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, article id 1902977Article in journal (Refereed)
    Abstract [en]

    The family of two-dimensional (2D) metal carbides and nitrides, known as MXenes, are among the most promising electrode materials for supercapacitors thanks to their high metal-like electrical conductivity and surface-functional-group-enabled pseudocapacitance. A major drawback of these materials is, however, the low mechanical strength, which prevents their applications in lightweight, flexible electronics. A strategy of assembling freestanding and mechanically robust MXene (Ti3C2Tx) nanocomposites with one-dimensional (1D) cellulose nanofibrils (CNFs) from their stable colloidal dispersions is reported. The high aspect ratio of CNF (width of approximate to 3.5 nm and length reaching tens of micrometers) and their special interactions with MXene enable nanocomposites with high mechanical strength without sacrificing electrochemical performance. CNF loading up to 20%, for example, shows a remarkably high mechanical strength of 341 MPa (an order of magnitude higher than pristine MXene films of 29 MPa) while still maintaining a high capacitance of 298 F g(-1) and a high conductivity of 295 S cm(-1). It is also demonstrated that MXene/CNF hybrid dispersions can be used as inks to print flexible micro-supercapacitors with precise dimensions. This work paves the way for fabrication of robust multifunctional MXene nanocomposites for printed and lightweight structural devices.

  • 40.
    Wang, Zhen
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Ouyang, Liangqi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Tian, Weiqian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Marais, Andrew
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Tybrandt, Klas
    Linkoping Univ, Dept Sci & Technol, Lab Organ Elect, S-60174 Norrkoping, Sweden.;Linkoping Univ, Dept Sci & Technol, Lab Organ Elect, Wallenberg Wood Sci Ctr, S-60174 Norrkoping, Sweden..
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Layer-by-Layer Assembly of High-Performance Electroactive Composites Using a Multiple Charged Small Molecule2019In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 35, no 32, p. 10367-10373Article in journal (Refereed)
    Abstract [en]

    Layer-by-layer (LbL) assembly is a versatile tool for fabricating multilayers with tailorable nanostructures. LbL, however, generally relies on polyelectrolytes, which are mostly insulating and induce large interlayer distances. We demonstrate a method in which we replace polyelectrolytes with the smallest unit capable of LbL self-assembly: a molecule with multiple positive charges, tris(3-aminopropyl)amine (TAPA), to fabricate LbL films with negatively charged single-walled carbon nanotubes (CNTs). TAPA introduces less defects during the LbL build-up and results in more efficient assembly of films with denser micromorphology. Twenty bilayers of TAPA/CNT showed a low sheet resistance of 11 k Omega, a high transparency of 91% at 500 nm, and a high electronic conductivity of 1100 S/m on planar substrates. We also fabricated LbL films on porous foams with a conductivity of 69 mS/m and used them as electrodes for supercapacitors with a high specific capacitance of 43 F/g at a discharging current density of 1 A/g.

  • 41.
    Wang, Zhen
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    VahidMohammadi, Armin
    A. J. Drexel Nanomaterials Institute Department of Materials Science and Engineering Drexel University.
    Ouyang, Liangqi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Tai, Cheuk-Wai
    Department of Materials and Environmental Chemistry Stockholm University.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hamedi, Mahiar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Layer-by-Layer Self-Assembled Nanostructured Electrodes for Lithium-Ion Batteries2021In: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 17, no 6, article id 2006434Article in journal (Refereed)
    Abstract [en]

    Gaining control over the nanoscale assembly of different electrode components in energy storage systems can open the door for design and fabrication of new electrode and device architectures that are not currently feasible. This work presents aqueous layer-by-layer (LbL) self-assembly as a route towards design and fabrication of advanced lithium-ion batteries (LIBs) with unprecedented control over the structure of the electrode at the nanoscale, and with possibilities for various new designs of batteries beyond the conventional planar systems. LbL self-assembly is a greener fabrication route utilizing aqueous dispersions that allow various Li+ intercalating materials assembled in complex 3D porous substrates. The spatial precision of positioning of the electrode components, including ion intercalating phase and electron-conducting phase, is down to nanometer resolution. This capable approach makes a lithium titanate anode delivering a specific capacity of 167 mAh g−1 at 0.1C and having comparable performances to conventional slurry-cast electrodes at current densities up to 100C. It also enables high flexibility in the design and fabrication of the electrodes where various advanced multilayered nanostructures can be tailored for optimal electrode performance by choosing cationic polyelectrolytes with different molecular sizes. A full-cell LIB with excellent mechanical resilience is built on porous insulating foams. 

  • 42.
    Wågberg, Lars
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    The Use of Layer-by-Layer Self-Assembly and Nanocellulose to Prepare Advanced Functional Materials2021In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 33, no 28, article id 2001474Article, review/survey (Refereed)
    Abstract [en]

    The current knowledge about the formation of layer-by-layer (LbL) self-assemblies using combinations of nanocelluloses (NCs) and polyelectrolytes is reviewed. Herein, the fundamentals behind the LbL formation, with a major focus on NCs, are considered. Following this, a special description of the limiting factors for the formation of LbLs of only NCs, both anionic and cationic, and the combination of NCs and polyelectrolytes/nanoparticles is provided. The ability of the NCs and polyelectrolytes to form dense films with excellent mechanical properties and with tailored optical properties is then reviewed. How low-density, wet stable networks of cellulose nanofibrils can be used as substrates for the preparation of antibacterial, electrically interactive, and fire-retardant materials by forming well-defined LbLs inside these networks is then considered. A short outlook of the possible uses of LbLs containing NCs is given to conclude.

  • 43.
    Wågberg, Lars
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Granberg, Hjalmar
    RISE Bioecon, Stockholm, Sweden..
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Zou, Fangxin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Östmans, Rebecca
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Spreading of water in low density nanocellulose networks: From capillaries to specific surface area2018In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 44.
    Wågberg, Lars
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Hamedi, Max
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Marais, Andrew
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Stanford Univ, Stanford, CA 94305 USA..
    Nyström, Gustav
    Swiss Fed Inst Technol, Dept Hlth Sci & Technol, Zurich, Switzerland..
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Granberg, Hjalmar
    RISE Bioecon, Stockholm, Sweden..
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, Fibre & Polymer Technol, Stockholm, Sweden..
    The use of the layer-by-layer technology and low density networks of cellulose nanofibrils for preparing new materials for energy storage2018In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 45.
    Yang, Hongli
    et al.
    Linköping Univ, Dept Sci & Technol, Lab Organ Elect, SE-60174 Norrköping, Sweden..
    Edberg, Jesper
    RISE Res Inst Sweden, Bio & Organ Elect, Bredgatan 33, S-60221 Norrköping, Sweden..
    Gueskine, Viktor
    Linköping Univ, Dept Sci & Technol, Lab Organ Elect, SE-60174 Norrköping, Sweden..
    Vagin, Mikhail
    Linköping Univ, Dept Sci & Technol, Lab Organ Elect, SE-60174 Norrköping, Sweden..
    Say, Mehmet Girayhan
    Linköping Univ, Dept Sci & Technol, Lab Organ Elect, SE-60174 Norrköping, Sweden..
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Engquist, Isak
    Linköping Univ, Dept Sci & Technol, Lab Organ Elect, SE-60174 Norrköping, Sweden.;Linköping Univ, Dept Sci & Technol, Wallenberg Wood Sci Ctr, SE-60174 Norrköping, Sweden..
    Berggren, Magnus
    Linköping Univ, Dept Sci & Technol, Lab Organ Elect, SE-60174 Norrköping, Sweden.;Linköping Univ, Dept Sci & Technol, Wallenberg Wood Sci Ctr, SE-60174 Norrköping, Sweden..
    The effect of crosslinking on ion transport in nanocellulose-based membranes2022In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 278, article id 118938Article in journal (Refereed)
    Abstract [en]

    Ion selective membranes are at the heart of energy conversion and harvesting, water treatment, and biotechnologies. The currently available membranes are mostly based on expensive and non-biodegradable polymers. Here, we report a cation-selective and low-cost membrane prepared from renewable nanocellulose and 1,2,3,4-butanetetracarboxylic acid which simultaneously serves as crosslinker and source of anionic surface groups. Charge density and structure of the membranes are studied. By using different degrees of crosslinking, simultaneous control over both the nanochannel structure and surface charge concentration is achieved, which in turn determines the resulting ion transport properties. Increasing negative charge concentration via higher crosslinker content, the obtained ion conductivity reaches up to 8 mS/cm (0.1 M KCl). Optimal ion selectivity, also influenced by the solution pH, is achieved at 20 wt% crosslinker addition (with ion conductivity of 1.6 mS/cm). As regular similar to 1.4 nm nanochannels were formed at this composition, nanofluidic contribution to ion transport is likely.

  • 46.
    Yang, Hongli
    et al.
    College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China; Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-601 74, Sweden.
    Edberg, Jesper
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware, Bio-, Organic and Printed Electronics, Norrköping 60233, Sweden.
    Say, Mehmet Girayhan
    Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-601 74, Sweden.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Gueskine, Viktor
    Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-601 74, Sweden; Wallenberg Wood Science Centre, Department of Science and Technology, Linköping University, Norrköping SE-601 74, Sweden.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berggren, Magnus
    Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-601 74, Sweden; Wallenberg Wood Science Centre, Department of Science and Technology, Linköping University, Norrköping SE-601 74, Sweden.
    Engquist, Isak
    Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-601 74, Sweden; Wallenberg Wood Science Centre, Department of Science and Technology, Linköping University, Norrköping SE-601 74, Sweden.
    Study on the Rectification of Ionic Diode Based on Cross-Linked Nanocellulose Bipolar Membranes2024In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 25, no 3, p. 1933-1941Article in journal (Refereed)
    Abstract [en]

    Nanocellulose-based membranes have attracted intense attention in bioelectronic devices due to their low cost, flexibility, biocompatibility, degradability, and sustainability. Herein, we demonstrate a flexible ionic diode using a cross-linked bipolar membrane fabricated from positively and negatively charged cellulose nanofibrils (CNFs). The rectified current originates from the asymmetric charge distribution, which can selectively determine the direction of ion transport inside the bipolar membrane. The mechanism of rectification was demonstrated by electrochemical impedance spectroscopy with voltage biases. The rectifying behavior of this kind of ionic diode was studied by using linear sweep voltammetry to obtain current-voltage characteristics and the time dependence of the current. In addition, the performance of cross-linked CNF diodes was investigated while changing parameters such as the thickness of the bipolar membranes, the scanning voltage range, and the scanning rate. A good long-term stability due to the high density cross-linking of the diode was shown in both current-voltage characteristics and the time dependence of current.

  • 47.
    Östmans, Rebecca
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Benselfelt, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. NTU Nanyang Technological University, School of Materials Science and Engineering, 639798 Singapore, Singapore.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Rostami, Jowan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Hall, Stephen
    Lund University, Division of Solid Mechanics, Lund, Sweden.
    Lindström, Stefan B.
    FSCN Research Center, Mid Sweden University, 851 70 Sundsvall, Sweden.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Solidified water at room temperature hosting tailored fluidic channels by using highly anisotropic cellulose nanofibrils2024In: Materials Today Nano, E-ISSN 2588-8420, Vol. 26, article id 100476Article in journal (Refereed)
    Abstract [en]

    Highly anisotropic cellulose nanofibrils can solidify liquid water, creating self-supporting structures by incorporating a tiny number of fibrils. These fibrillar hydrogels can contain as much as 99.99 wt% water. The structure and mechanical properties of fibrillar networks have so far not been completely understood, nor how they solidify the bulk water at such low particle concentrations. In this work, the mechanical properties of cellulose fibrillar hydrogels in the dilute regime from a wt% perspective have been studied, and an elastoplastic model describing the network structure and its mechanics is presented. A significant insight from this work is that the ability of the fibrils to solidify water is very dependent on particle stiffness and the number of contact points it can form in the network structure. The comparison between the experimental results and the theoretical model shows that the fibrillar networks in the dilute regime form via a non-stochastic process since the fibrils have the time and freedom to find contact points during network formation by translational and rotational diffusion. The formed, dilute fibrillar network deforms by sliding fibril contacts upon straining the network beyond its elastic limit. Our results also show that before macroscopic failure, the fibril contacts are restored once the load is released. The exceptional properties of this solidified water are exploited to host fluidic channels, allowing directed fluid transportation in water. Finally, the microfluidic channels formed in the hydrogels are tailored by the layer-by-layer technique to be interactive against external stimuli, a characteristic envisioned to be useful in biomedical applications.

1 - 47 of 47
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf