Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Cheng, Ming
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Li, Yuanyuan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Liu, Peng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Zhang, Fuguo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Hajian, Alireza
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Wang, Haoxin
    State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT–KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), Dalian, China.
    Li, Jiajia
    State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT–KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), Dalian, China.
    Wang, Linqin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Yang, Xichuan
    State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT–KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), Dalian, China.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT–KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology (DUT), Dalian, China.
    A Perylenediimide Tetramer-Based 3D Electron Transport Material for Efficient Planar Perovskite Solar Cell2017In: Solar RRL, ISSN 2367-198X, Vol. 1, no 5, article id 1700046Article in journal (Refereed)
    Abstract [en]

    A perylenediimide (PDI) tetramer-based three dimensional (3D) molecular material, termed SFX-PDI4, has been designed, synthesized, and characterized. The low-lying HOMO and LUMO energy levels, high electron mobility and good film-formation property make it a promising electron transport material (ETM) in inverted planar perovskite solar cells (PSCs). The device exhibits a high power conversion efficiency (PCE) of 15.3% with negligible hysteresis, which can rival that of device based on PC61BM. These results demonstrate that three dimensional PDI-based molecular materials could serve as high performance ETMs in PSCs.

  • 2.
    Cheng, Ming
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Li, Yuanyuan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Safdari, Majid
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Chen, Cheng
    Liu, Peng
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Efficient Perovskite Solar Cells Based on a Solution Processable Nickel(II) Phthalocyanine and Vanadium Oxide Integrated Hole Transport Layer2017In: Advanced Energy Materials, ISSN 1614-6832, Vol. 7, no 14, article id 1602556Article in journal (Refereed)
    Abstract [en]

    An organic-inorganic integrated hole transport layer (HTL) composed of the solution-processable nickel phthalocyanine (NiPc) abbreviated NiPc-(OBu)(8) and vanadium(V) oxide (V2O5) is successfully incorporated into structured mesoporous perovskite solar cells (PSCs). The optimized PSCs show the highest stabilized power conversion efficiency of up to 16.8% and good stability under dark ambient conditions. These results highlight the potential application of organic-inorganic integrated HTLs in PSCs.

  • 3.
    Fu, Qiliang
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Medina, Lilian
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Li, Yuanyuan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Carosio, Federico
    Hajian, Alireza
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Nanostructured Wood Hybrids for Fire-Retardancy Prepared by Clay Impregnation into the Cell Wall2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 41, p. 36154-36163Article in journal (Refereed)
    Abstract [en]

    Eco-friendly materials need "green" fire-retardancy treatments, which offer opportunity for new wood nanotechnologies. Balsa wood (Ochroma pyramidale) was delignified to form a hierarchically structured and nanoporous scaffold mainly composed of cellulose nanofibrils. This nanocellulosic wood scaffold was impregnated with colloidal montmorillonite clay to form a nanostructured wood hybrid with high flame-retardancy. The nanoporous scaffold was characterized by scanning electron microscopy and gas adsorption. Flame-retardancy was evaluated by cone calorimetry, whereas thermal and thermo-oxidative stabilities were assessed by thermogravimetry. The location of well-distributed clay nanoplatelets inside the cell walls was confirmed by energy-dispersive X-ray analysis. This unique nanostructure dramatically increased the thermal stability because of thermal insulation, oxygen depletion, and catalytic charring effects. A coherent organic/inorganic charred residue was formed during combustion, leading to a strongly reduced heat release rate peak and reduced smoke generation.

  • 4.
    Li, Yuanyuan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Fu, Qiliang
    Rojas, Ramiro
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Yan, Min
    KTH, School of Electrical Engineering (EES).
    Lawoko, Martin
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Biocomposites. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology. KTH, Superseded Departments (pre-2005), Fibre and Polymer Technology. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Fibre Technology.
    Lignin-Retaining Transparent Wood2017In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 10, no 17, p. 3445-3451Article in journal (Refereed)
    Abstract [en]

    Optically transparent wood, combining optical and mechanical performance, is an emerging new material for light-transmitting structures in buildings with the aim of reducing energy consumption. One of the main obstacles for transparent wood fabrication is delignification, where around 30wt% of wood tissue is removed to reduce light absorption and refractive index mismatch. This step is time consuming and not environmentally benign. Moreover, lignin removal weakens the wood structure, limiting the fabrication of large structures. A green and industrially feasible method has now been developed to prepare transparent wood. Up to 80wt% of lignin is preserved, leading to a stronger wood template compared to the delignified alternative. After polymer infiltration, a high-lignin-content transparent wood with transmittance of 83%, haze of 75%, thermal conductivity of 0.23WmK(-1), and work-tofracture of 1.2MJm(-3) (a magnitude higher than glass) was obtained. This transparent wood preparation method is efficient and applicable to various wood species. The transparent wood obtained shows potential for application in energy-saving buildings.

  • 5.
    Li, Yuanyuan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Fu, Qiliang
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Yang, Xuan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Transparent wood for functional and structural applications2018In: Philosophical Transactions. Series A: Mathematical, physical, and engineering science, ISSN 1364-503X, E-ISSN 1471-2962, Vol. 376, no 2112, article id 20170182Article, review/survey (Refereed)
    Abstract [en]

    Optically transparent wood combines mechanical performance with optical functionalities is an emerging candidate for applications in smart buildings and structural optics and photonics. The present review summarizes transparent wood preparation methods, optical and mechanical performance, and functionalization routes, and discusses potential applications. The various challenges are discussed for the purpose of improved performance, scaled-up production and realization of advanced applications. This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'.

  • 6.
    Li, Yuanyuan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Fu, Qiliang
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Yu, Shun
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Yan, Min
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance2016In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 17, no 4, p. 1358-1364Article in journal (Refereed)
    Abstract [en]

    Optically transparent wood (TW) with transmittance as high as 85% and haze of 71% was obtained using a delignified nanoporous wood template. The template was prepared by removing the light-absorbing lignin component, creating nanoporosity in the wood cell wall. Transparent wood was prepared by successful impregnation of lumen and the nanoscale cellulose fiber network in the cell wall with refractive-index-matched prepolymerized methyl methacrylate (MMA). During the process, the hierarchical wood structure was preserved. Optical properties of TW are tunable by changing the cellulose volume fraction. The synergy between wood and PMMA was observed for mechanical properties. Lightweight and strong transparent wood is a potential candidate for lightweight low-cost, light-transmitting buildings and transparent solar cell windows.

  • 7.
    Li, Yuanyuan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Yu, Shun
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Chen, Pan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Rojas, Ramiro
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Hajian, Alireza
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Cellulose nanofibers enable paraffin encapsulation and the formation of stable thermal regulation nanocomposites2017In: Nano Energy, ISSN 2211-2855, Vol. 34, p. 541-548Article in journal (Refereed)
    Abstract [en]

    Non-leaking, green materials with high content of phase change materials (PCM) can conserve solar energy and contribute to a sustainable society. Here, paraffin was encapsulated by nanocellulose (CNF) through a pickering emulsion method, while simultaneously forming a composite material. The thermodynamic drive for phase separation was confirmed by molecular modeling. Particle formation was characterized by dynamic light scattering and they were processed into stable PCM/CNF composites in the form of PCM paper structures with favorable mechanical properties. The PCM composite was lightweight and showed a solid content of paraffin of more than 72 wt%. Morphology was characterized using FE-SEM. The thermal regulation function of the PCM composite was demonstrated in the form of a model roof under simulated sunlight. No obvious leakage was observed during heating/cooling cycles, as supported by DSC and SAXS data. The PCM composite can be extended to panels used in energy-efficient smart buildings with thermal regulation integrated in load-bearing structures.

  • 8.
    Li, Yuanyuan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Yu, Shun
    KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Veinot, J. G. C.
    Linnros, Jan
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Sychugov, Ilya
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Luminescent Transparent Wood2017In: Advanced Optical Materials, ISSN 2195-1071, Vol. 5, no 1, article id 1600834Article in journal (Refereed)
    Abstract [en]

    Luminescent transparent wood is prepared by combining the complementary properties of naturally grown anisotropic porous wood and luminescent quantum dots. The wood structure introduces strong diffused luminescence and waveguiding, which can potentially be exploited for optoelectronic and photovoltaic applications, such as for planar illumination sources and luminescent buildings/furniture. Images below show the transparency, haze, and luminescence of quantum dot wood.

  • 9.
    Vasileva, Elena
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Li, Yuanyuan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Sychugov, Ilya
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Mensi, Mounir
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Lasing from Organic Dye Molecules Embedded in Transparent Wood2017In: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071, Vol. 5, no 10, article id 1700057Article in journal (Refereed)
    Abstract [en]

    The report on a study of laser emission from a conceptually new organic material based on transparent wood (TW) with embedded dye Rhodamine 6G molecules is presented in this paper. The lasing performance is compared to a reference organic material containing dye in a poly-methyl-methacrylate matrix. From experimental results, one can conclude that the optical feedback in dye-TW material is realized within cellulose fibers, which play the role of tiny optical resonators. Therefore, the output emission is a collective contribution of individual resonators. Due to this fact, as well as low Q-factor of the resonators/fibers and their length variation, the spectral line of laser emission is broadened up to several nanometers.

  • 10.
    Zhang, Biaobiao
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Valvo, M.
    Fan, Lizhou
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Daniel, Quentin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Zhang, Peili
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Wang, Linqin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Sun, Licheng
    KTH, Superseded Departments (pre-2005), Chemistry.
    Electrocatalytic Water Oxidation Promoted by 3 D Nanoarchitectured Turbostratic Δ-MnOx on Carbon Nanotubes2017In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 10, no 22, p. 4472-4478Article in journal (Refereed)
    Abstract [en]

    The development of manganese-based water oxidation electrocatalysts is desirable for the production of solar fuels, as manganese is earth-abundant, inexpensive, non-toxic, and has been employed by the Photosystem II in nature for a billion years. Herein, we directly constructed a 3 D nanoarchitectured turbostratic δ-MnOx on carbon nanotube-modified nickel foam (MnOx/CNT/NF) by electrodeposition and a subsequent annealing process. The MnOx/CNT/NF electrode gives a benchmark catalytic current density (10 mA cm−2) at an overpotential (η) of 270 mV under alkaline conditions. A steady current density of 19 mA cm−2 is obtained during electrolysis at 1.53 V for 1.0 h. To the best of our knowledge, this work represents the most efficient manganese-oxide-based water oxidation electrode and demonstrates that manganese oxides, as a structural and functional model of oxygen-evolving complex (OEC) in Photosystem II, can also become comparable to those of most Ni- and Co-based catalysts.

  • 11.
    Zhang, Wei
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Liu, Peng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Sadollahkhani, Azar
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Li, Yuanyuan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Zhang, Biaobiao
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Zhang, Fuguo
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Safdari, Majid
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Hao, Yan
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Hua, Yong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
    Investigation of Triphenylamine (TPA)-Based Metal Complexes and Their Application in Perovskite Solar Cells2017In: ACS OMEGA, ISSN 2470-1343, Vol. 2, no 12, p. 9231-9240Article in journal (Refereed)
    Abstract [en]

    Triphenylamine-based metal complexes were designed and synthesized via coordination to Ni(II), Cu(II), and Zn(II) using their respective acetate salts as the starting materials. The resulting metal complexes exhibit more negative energy levels (vs vacuum) as compared to 2,2', 7,7'-tetrakis(N, N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD), high hole extraction efficiency, but low hole mobilities and conductivities. Application of dopants typically used for Spiro-OMeTAD was not successful, indicating a more complicated mechanism of partial oxidation besides the redox potential. However, utilization as hole-transport material was successful, giving a highest efficiency of 11.1% under AM 1.5G solar illumination.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf