Change search
Refine search result
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Filotheou, Alexandros
    et al.
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Nikou, Alexandros
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Decentralized Control of Uncertain Multi-Agent Systems with Connectivity Maintenance and Collision Avoidance2018In: 2018 European Control Conference, ECC 2018, Institute of Electrical and Electronics Engineers (IEEE), 2018, p. 8-13, article id 8550343Conference paper (Refereed)
    Abstract [en]

    This paper addresses the problem of navigation control of a general class of uncertain nonlinear multi-agent systems in a bounded workspace, which is subset of \mathbb {R}^{n}, with static obstacles. In particular, we propose a decentralized control protocol such that each agent reaches a predefined position at the workspace, while using only local information based on a limited sensing radius. The proposed scheme guarantees that the initially connected agents remain always connected. In addition, by introducing certain distance constraints, we guarantee inter-agent collision avoidance, as well as, collision avoidance with the obstacles and the boundary of the workspace. The proposed controllers employ a class of Decentralized Nonlinear Model Predictive Controllers (DNMPC) under the presence of disturbances and uncertainties. Finally, simulation results verify the validity of the proposed framework.

  • 2.
    Filotheou, Alexandros
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, ACCESS Linnaeus Centre.
    Nikou, Alexandros
    KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, ACCESS Linnaeus Centre.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, ACCESS Linnaeus Centre.
    Robust decentralised navigation of multi-agent systems with collision avoidance and connectivity maintenance using model predictive controllers2018In: International Journal of Control, ISSN 0020-7179, E-ISSN 1366-5820Article in journal (Other academic)
    Abstract [en]

    , with static obstacles. In particular, we propose a decentralised control protocol such that each agent reaches a predefined position at the workspace, while using local information based on a limited sensing radius. The proposed scheme guarantees that the initially connected agents remain always connected. In addition, by introducing certain distance constraints, we guarantee inter-agent collision avoidance as well as collision avoidance with the obstacles and the boundary of the workspace. The proposed controllers employ a class of Decentralized Nonlinear Model Predictive Controllers (DNMPC) under the presence of disturbances and uncertainties. Finally, simulation results verify the validity of the proposed framework.

  • 3.
    Heshmati Alamdari, Shahab
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control).
    Nikou, Alexandros
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control).
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control).
    Robust trajectory tracking control for underactuated autonomous underwater vehicles2019In: Proceedings 2019 IEEE Conference on Decision and Control (CDC), 2019Conference paper (Other academic)
    Abstract [en]

    Motion control of underwater robotic vehicles isa demanding task with great challenges imposed by external disturbances, model uncertainties and constraints of the operating workspace. Thus, robust motion control is still an open issue for the underwater robotics community. In that sense, this paper addresses the tracking control problem of 3D trajectories for underactuated underwater robotic vehicles operating in a constrained workspace including obstacles. In particular, a robust Nonlinear Model Predictive Control (NMPC) scheme is presented for the case of underactuated Autonomous Underwater Vehicles (AUVs) (i.e., vehicles actuated only in surge, heave and yaw). The purpose of the controller is to steer the underactuated AUV to a desired trajectory with guaranteed input and state constraints inside a partially known and dynamic environment where the knowledge of the operating workspace is constantly updated on–line via the vehicle’s on–board sensors. In particular, by considering a ball which covers the volume oft he system, obstacle avoidance with any of the detected obstacles is guaranteed, despite the model dynamic uncertainties and the presence of external disturbances representing ocean currents and waves. The proposed feedback control law consists of two parts: an online law which is the outcome of a Finite Horizon Optimal Control Problem (FHOCP) solved for the nominal dynamics; and a state feedback law which is tuned off-line and guarantees that the real trajectories remain bounded in a hyper-tube centered along the nominal trajectories for all times. Finally, a simulation study verifies the performance and efficiency of the proposed approach.

  • 4. Heshmati-alamdari, S.
    et al.
    Nikou, Alexandros
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Kyriakopoulos, K. J.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    A Robust Force Control Approach for Underwater Vehicle Manipulator Systems2017In: IFAC-PapersOnLine, ISSN 2405-8963, Vol. 50, no 1, p. 11197-11202Article in journal (Refereed)
    Abstract [en]

    In various interaction tasks using Underwater Vehicle Manipulator Systems (UVMSs) (e.g. sampling of the sea organisms, underwater welding), important factors such as: i) uncertainties and complexity of UVMS dynamic model ii) external disturbances (e.g. sea currents and waves) iii) imperfection and noises of measuring sensors iv) steady state performance as well as v) inferior overshoot of interaction force error, should be addressed during the force control design. Motivated by the above factors, this paper presents a model-free control protocol for force controlling of an Underwater Vehicle Manipulator System which is in contact with an unknown compliant environment, without incorporating any knowledge of the UVMS's dynamic model, exogenous disturbances and sensor's noise model. Moreover, the transient and steady state response as well as reduction of overshooting force error are solely determined by certain designer-specified performance functions and are fully decoupled by the UVMS's dynamic model, the control gain selection, as well as the initial conditions. Finally, a simulation study clarifies the proposed method and verifies its efficiency.

  • 5.
    Heshmati-Alamdari, Shahab
    et al.
    Natl Tech Univ Athens, Dept Mech Engn, Control Syst Lab, 9 Heroon Polytech St, Zografos 15780, Greece..
    Bechlioulis, Charalampos P.
    Natl Tech Univ Athens, Dept Mech Engn, Control Syst Lab, 9 Heroon Polytech St, Zografos 15780, Greece..
    Karras, George C.
    Natl Tech Univ Athens, Dept Mech Engn, Control Syst Lab, 9 Heroon Polytech St, Zografos 15780, Greece..
    Nikou, Alexandros
    KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.
    Kyriakopoulos, Kostas J.
    Natl Tech Univ Athens, Dept Mech Engn, Control Syst Lab, 9 Heroon Polytech St, Zografos 15780, Greece..
    A robust interaction control approach for underwater vehicle manipulator systems2018In: Annual Reviews in Control, ISSN 1367-5788, E-ISSN 1872-9088, Vol. 46, p. 315-325Article, review/survey (Refereed)
    Abstract [en]

    In underwater robotic interaction tasks (e.g., sampling of sea organisms, underwater welding, panel handling, etc) various issues regarding the uncertainties and complexity of the robot dynamic model, the external disturbances (e.g., sea currents), the steady state performance as well as the overshooting/undershooting of the interaction force error, should be addressed during the control design. Motivated by the aforementioned considerations, this paper presents a force/position tracking control protocol for an Underwater Vehicle Manipulator System (UVMS) in compliant contact with a planar surface, without incorporating any knowledge of the UVMS dynamic model, the exogenous disturbances or the contact stiffness model. Moreover, the proposed control framework guarantees: (i) certain predefined minimum speed of response, maximum steady state error as well as overshoot/undershoot concerning the force/position tracking errors, (ii) contact maintenance and (iii) bounded closed loop signals. Additionally, the achieved transient and steady state performance is solely determined by certain designer-specified performance functions/parameters and is fully decoupled from the control gain selection and the initial conditions. Finally, both simulation and experimental studies clarify the proposed method and verify its efficiency.

  • 6.
    Nikou, Alexandros
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, ACCESS Linnaeus Centre.
    Boskos, Dimitris
    KTH, School of Electrical Engineering and Computer Science (EECS), Centres, ACCESS Linnaeus Centre. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.
    Tumova, Jana
    KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, ACCESS Linnaeus Centre.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, ACCESS Linnaeus Centre.
    On the timed temporal logic planning of coupled multi-agent systems2018In: Automatica, ISSN 0005-1098, E-ISSN 1873-2836, Vol. 97, p. 339-345Article in journal (Refereed)
    Abstract [en]

    This paper presents a fully automated procedure for controller synthesis for multi-agent systems under coupling constraints. Each agent is modeled with dynamics consisting of two terms: the first one models the coupling constraints and the other one is an additional bounded control input. We aim to design these inputs so that each agent meets an individual high-level specification given as a Metric Interval Temporal Logic (MITL). First, a decentralized abstraction that provides a space and time discretization of the multi agent system is designed. Second, by utilizing this abstraction and techniques from formal verification, we propose an algorithm that computes the individual runs which provably satisfy the high-level tasks. The overall approach is demonstrated in a simulation example conducted in MATLAB environment.

  • 7.
    Nikou, Alexandros
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Automatic Control.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering and Computer Science (EECS), Automatic Control.
    Robust tube-based model predictive control for time-constrained robot navigation2019In: Proceedings of the American Control Conference, Institute of Electrical and Electronics Engineers (IEEE), 2019, p. 1152-1157, article id 8815253Conference paper (Refereed)
    Abstract [en]

    This paper deals with the problem of time-constrained navigation of a robot modeled by uncertain nonlinear non-affine dynamics in a bounded workspace of Rn. Initially, we provide a novel class of robust feedback controllers that drive the robot between Regions of Interest (RoI) of the workspace. The control laws consists of two parts: an on-line controller which is the outcome of a Finite Horizon Optimal Control Problem (FHOCP); and a backstepping feedback law which is tuned off-line and guarantees that the real trajectory always remains in a bounded hyper-tube centered along the nominal trajectory of the robot. The proposed controller falls within the so-called tube-based Nonlinear Model Predictive control (NMPC) methodology. Then, given a desired high-level specification for the robot in Metric Interval Temporal Logic (MITL), by utilizing the aforementioned controllers, a framework that provably guarantees the satisfaction of the formula is provided. The proposed framework can handle the rich expressiveness of MITL in both safety and reachability specifications. Finally, the proposed framework is validated by numerical simulations.

  • 8.
    Nikou, Alexandros
    et al.
    Control Systems Lab, Department of Mechanical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Zografou 15780, Greece.
    Gavridis, Georgios
    Control Systems Lab, Department of Mechanical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Zografou 15780, Greece.
    Kyriakopoulos, Kostas J.
    Control Systems Lab, Department of Mechanical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Zografou 15780, Greece.
    Mechanical design, modelling and control of a novel aerial manipulator2015Conference paper (Other academic)
    Abstract [en]

    In this paper a novel aerial manipulation system is proposed. The mechanical structure of the system, the number of thrusters and their geometry will be derived from technical optimization problems. The aforementioned problems are defined by taking into consideration the desired actuation forces and torques applied to the end-effector of the system. The framework of the proposed system is designed in a CAD Package in order to evaluate the system parameter values. Following this, the kinematic and dynamic models are developed and an adaptive backstepping controller is designed aiming to control the exact position and orientation of the end-effector in the Cartesian space. Finally, the performance of the system is demonstrated through a simulation study, where a manipulation task scenario is investigated.

  • 9.
    Nikou, Alexandros
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control).
    Heshmati-alamdari, Shahab
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control).
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control).
    Design and Experimental Validation of Tube-based MPC for Timed-constrained Robot Planning2019In: Proceedings IEEE 15th International Conference on Automation Science and Engineering (CASE), IEEE, 2019Conference paper (Other academic)
    Abstract [en]

    This paper deals with the design and experimental validation of a state-of-the art tube-based Model Predictive Control (MPC) for achieving time-constrained tasks. Given the uncertain nonlinear dynamics of the robot as well as a high-level task written in Metric Interval Temporal Logic (MITL), the goal is to design a feedback control law that guarantees the satisfaction of the task. The workspace is divided into Regions of Interest (RoI) and contains also unsafe regions (obstacles) that the robot should not visit. The feedback control law consists of two terms: a control input which is the outcome of a Finite Horizon Optimal Control (FHOCP); and a state feedback law that guarantees that the nominal trajectories are bounded within a tube centered along the nominal trajectories. The aforementioned control law guarantees that the robot is safely navigated through the RoI within certain time bounds. The proposed framework can handle the rich expressiveness of MITL and is experimentally tested with a Nexus mobile robot in our lab facilities. The experimental results show that the proposed framework is promising for solving real-life robotic as well as industrial problems.

  • 10.
    Nikou, Alexandros
    et al.
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Heshmati-alamdari, Shahab
    Verginis, Christos K.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Decentralized Abstractions and Timed Constrained Planning of a General Class of Coupled Multi-Agent Systems2017In: 2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017, IEEE , 2017Conference paper (Refereed)
    Abstract [en]

    This paper presents a fully automated procedure for controller synthesis for a general class of multi-agent systems under coupling constraints. Each agent is modeled with dynamics consisting of two terms: the first one models the coupling constraints and the other one is an additional bounded control input. We aim to design these inputs so that each agent meets an individual high-level specification given as a Metric Interval Temporal Logic (MITL). Furthermore, the connectivity of the initially connected agents, is required to be maintained. First, assuming a polyhedral partition of the workspace, a novel decentralized abstraction that provides controllers for each agent that guarantee the transition between different regions is designed. The controllers are the solution of a Decentralized Robust Optimal Control Problem (DROCP) for each agent. Second, by utilizing techniques from formal verification, an algorithm that computes the individual runs which provably satisfy the high-level tasks is provided.

  • 11.
    Nikou, Alexandros
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Tumova, Jana
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Cooperative Task Planning of Multi-Agent Systems Under TimedTemporal Specifications2016In: Proceedings of the American Control Conference, 2016, p. 7104-7109Conference paper (Refereed)
    Abstract [en]

    In this paper the problem of cooperative taskplanning of multi-agent systems when timed constraints areimposed to the system is investigated. We consider timedconstraints given by Metric Interval Temporal Logic (MITL).We propose a method for automatic control synthesis in a two-stage systematic procedure. With this method we guarantee thatall the agents satisfy their own individual task specifications aswell as that the team satisfies a team global task specification.

  • 12.
    Nikou, Alexandros
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Tumova, Jana
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Probabilistic Plan Synthesis for Coupled Multi-Agent Systems2017Conference paper (Refereed)
  • 13.
    Nikou, Alexandros
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Tumova, Jana
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Probabilistic Plan Synthesis for Coupled Multi-Agent Systems2017In: IFAC-PapersOnLine, ISSN 2405-8963, Vol. 50, no 1, p. 10766-10771Article in journal (Refereed)
    Abstract [en]

    This paper presents a fully automated procedure for controller synthesis for multi-agent systems under the presence of uncertainties. We model the motion of each of the N agents in the environment as a Markov Decision Process (MDP) and we assign to each agent one individual high-level formula given in Probabilistic Computational Tree Logic (PCTL). Each agent may need to collaborate with other agents in order to achieve a task. The collaboration is imposed by sharing actions between the agents. We aim to design local control policies such that each agent satisfies its individual PCTL formula. The proposed algorithm builds on clustering the agents, MDP products construction and controller policies design. We show that our approach has better computational complexity than the centralized case, which traditionally suffers from very high computational demands.

  • 14.
    Nikou, Alexandros
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control).
    Verginis, Christos
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control).
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control).
    A Tube-based MPC Scheme for Interaction Control of Underwater Vehicle Manipulator Systems2018In: AUV 2018 - 2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Proceedings, Institute of Electrical and Electronics Engineers Inc. , 2018Conference paper (Refereed)
    Abstract [en]

    Over the last years, the development of Autonomous Underwater Vehicles (AUV) with attached robotic manipulators, the so-called Underwater Vehicle Manipulator System (UVMS), has gained significant research attention, due to the ability of interaction with underwater environments. In such applications, force/torque controllers which guarantee that the end-effector of the UVMS applies desired forces/torques towards the environment, should be designed in a way that state and input constraints are taken into consideration. Furthermore, due to their complicated structure, unmodeled dynamics as well as external disturbances may arise. Motivated by this, we proposed a robust Model Predicted Control Methodology (NMPC) methodology which can handle the aforementioned constraints in an efficient way and it guarantees that the end-effector is exerting the desired forces/torques towards the environment. Simulation results verify the validity of the proposed framework.

  • 15.
    Verginis, Christos K.
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Nikou, Alexandros
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Communication-based Decentralized Cooperative Object Transportation Using Nonlinear Model Predictive Control2018In: 2018 European Control Conference, ECC 2018, Institute of Electrical and Electronics Engineers (IEEE), 2018, p. 733-738, article id 8550305Conference paper (Refereed)
    Abstract [en]

    This paper addresses the problem of cooperative transportation of an object rigidly grasped by N robotic agents. We propose a decentralized Nonlinear Model Predictive Control (NMPC) scheme that guarantees the navigation of the object to a desired pose in a bounded workspace with obstacles, while complying with certain input saturations of the agents. The control scheme is based on inter-agent communication and is decentralized in the sense that each agent calculates its own control signal. Moreover, the proposed methodology ensures that the agents do not collide with each other or with workspace obstacles as well as that they do not pass through singular configurations. Finally, simulation results illustrate the validity and efficiency of the proposed method.

  • 16.
    Verginis, Christos K.
    et al.
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Nikou, Alexandros
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Position and Orientation Based Formation Control of Multiple Rigid Bodies with Collision Avoidance and Connectivity Maintenance2017In: 2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017, Institute of Electrical and Electronics Engineers (IEEE), 2017, p. 411-416Conference paper (Refereed)
    Abstract [en]

    This paper addresses the problem of position-and orientation-based formation control of a class of second-order nonlinear multi-agent systems in a 3D workspace with obstacles. More specifically, we design a decentralized control protocol such that each agent achieves a predefined geometric formation with its initial neighbors, while using local information based on a limited sensing radius. The latter implies that the proposed scheme guarantees that the initially connected agents remain always connected. In addition, by introducing certain distance constraints, we guarantee inter-agent collision avoidance as well as collision avoidance with the obstacles and the boundary of the workspace. Finally, simulation results verify the validity of the proposed framework.

1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf