Endre søk
Begrens søket
1 - 39 of 39
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abdelhamid, Hani Nasser
    et al.
    Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden.;Assiut Univ, Dept Chem, Adv Multifunct Mat Lab, Assiut 71515, Egypt..
    El-Zohry, Ahmed M.
    Uppsala Univ, Dept Chem, Angstrom Labs, POB 523, S-75120 Uppsala, Sweden..
    Cong, Jiayan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Thersleff, Thomas
    Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden..
    Karlsson, Karl Martin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Kloo, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Zou, Xiaodong
    Stockholm Univ, Dept Mat & Environm Chem, S-10691 Stockholm, Sweden..
    Towards implementing hierarchical porous zeolitic imidazolate frameworks in dye-sensitized solar cells2019Inngår i: Royal Society Open Science, E-ISSN 2054-5703, Vol. 6, nr 7, artikkel-id 190723Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A one-pot method for encapsulation of dye, which can be applied for dye-sensitized solar cells (DSSCs), and synthesis of hierarchical porous zeolitic imidazolate frameworks (ZIF-8), is reported. The size of the encapsulated dye tunes the mesoporosity and surface area of ZIF-8. The mesopore size, Langmuir surface area and pore volume are 15 nm, 960-1500 m(2). g(-1) and 0.36-0.61 cm(3). g(-1), respectively. After encapsulation into ZIF-8, the dyes show longer emission lifetimes (greater than 4-8-fold) as compared to the corresponding non-encapsulated dyes, due to suppression of aggregation, and torsional motions.

  • 2.
    Bhagavathiachari, Muthuraaman
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Elumalai, V.
    Gao, Jiajia
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Polymer-doped molten salt mixtures as a new concept for electrolyte systems in dye-sensitized solar cells2017Inngår i: ACS Omega, ISSN 2470-1343, Vol. 2, nr 10, s. 6570-6575Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A conceptually new polymer electrolyte for dye-sensitized solar cells is reported and investigated. The benefits of using this type of electrolyte based on ionic liquid mixtures (ILMs) and room temperature ionic liquids are highlighted. Impedance spectroscopy and transient electron measurements have been used to elucidate the background of the photovoltaic performance. Even though larger recombination losses were noted, the high ion mobility and conductivity induced in the ILMs by the added polymer result in enhanced overall conversion efficiencies.

  • 3.
    Cappel, Ute B.
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    Liu, Peng
    KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Tillämpad materialfysik. KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Johansson, Fredrik O. L.
    Uppsala Univ, Div Mol & Condensed Matter Phys, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Philippe, Bertrand
    Uppsala Univ, Div Mol & Condensed Matter Phys, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Giangrisostomi, Erika
    Helmholtz Zentrum Berlin GmbH, Inst Methods & Instrumentat Synchrotron Radiat Re, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Ovsyannikov, Ruslan
    Helmholtz Zentrum Berlin GmbH, Inst Methods & Instrumentat Synchrotron Radiat Re, Albert Einstein Str 15, D-12489 Berlin, Germany..
    Lindblad, Andreas
    Uppsala Univ, Div Mol & Condensed Matter Phys, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Gardner, James M.
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Rensmo, Hakan
    Uppsala Univ, Div Mol & Condensed Matter Phys, Dept Phys & Astron, SE-75120 Uppsala, Sweden..
    Electronic Structure Characterization of Cross-Linked Sulfur Polymers2018Inngår i: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, Vol. 19, nr 9, s. 1041-1047Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cross-linked polymers of elemental sulfur are of potential interest for electronic applications as they enable facile thin-film processing of an abundant and inexpensive starting material. Here, we characterize the electronic structure of a cross-linked sulfur/diisopropenyl benzene (DIB) polymer by a combination of soft and hard X-ray photoelectron spectroscopy (SOXPES and HAXPES). Two different approaches for enhancing the conductivity of the polymer are compared: the addition of selenium in the polymer synthesis and the addition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) during film preparation. For the former, we observe the incorporation of Se into the polymer structure resulting in a changed valence-band structure. For the latter, a Fermi level shift in agreement with p-type doping of the polymer is observed and also the formation of a surface layer consisting mostly of TFSI anions.

  • 4. Chen, C.
    et al.
    Cheng, M.
    Li, H.
    Qiao, F.
    Liu, Peng
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi.
    Kloo, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi.
    Sun, Licheng
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi.
    Molecular engineering of ionic type perylenediimide dimer-based electron transport materials for efficient planar perovskite solar cells2018Inngår i: Materials Today Energy, ISSN 2468-6069, Vol. 9, s. 264-270Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The main of this work is to overcome the drawbacks of the traditional fullerene derivatives used as electron transport materials (ETMs) for perovskite solar cells (PSCs). Herein, a new strategy to design non-fullerene ETMs is presented by molecular engineering to include charged moieties in the ETM. The designed ETM FA2+-PDI2 is intrinsically ionic and the incorporated counter ions in FA2+-PDI2 significantly increase the electron conductivity and improve the film formation properties. Through careful device optimization, PSCs based on the ionic ETM FA2+-PDI2 exhibit an impressive average power conversion efficiency (PCE) of 17.0%, which is comparable to the PSC based on PC61BM (17.5%). The superior photovoltaic performance can be attributed to efficient electron extraction and effective electron transfer in the PSCs. This work provides important insights regarding the future design of new and efficient non-fullerene ETMs for PSCs. 

  • 5. Chen, Cheng
    et al.
    Zhang, Wei
    Cong, Jiayan
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Cheng, Ming
    Zhang, Biaobiao
    Chen, Hong
    Liu, Peng
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Li, Ruifeng
    Safdari, Majid
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Sun, Licheng
    Cu(II) Complexes as p-Type Dopants in Efficient Perovskite Solar Cells2017Inngår i: ACS ENERGY LETTERS, ISSN 2380-8195, Vol. 2, nr 2, s. 497-503Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this work, two Cu(II) complex compounds are designed and synthesized for applications as p-type dopants in solid-state perovskite solar cells (PSCs). Through the characterization of the optical and electrochemical properties, the complex Cu(bpcm)(2) is shown to be eligible for oxidization of the commonly used hole-transport material (HTM) SpiroOMeTAD. The reason is the electron-withdrawing effect of the chloride groups on the ligands. When the complex was applied as p-type dopant in PSCs containing Spiro-OMeTAD as HTM, an efficiency as high as 18.5% was achieved. This is the first time a Cu(II) pyridine complex has been used as p-type dopant in PSCs.

  • 6. Chen, Song
    et al.
    Liu, Peng
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Hua, Yong
    KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.
    Li, Yuanyuan
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Wang, Xingzhu
    Ong, Beng
    Wong, Wai-Kwok
    Zhu, Xunjin
    Study of Arylamine-Substituted Porphyrins as Hole-Transporting Materials in High-Performance Perovskite Solar Cells2017Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, nr 15, s. 13231-13239Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    To develop new hole-transporting materials (HTMs) for efficient and stable perovskite solar. cells (PSCs), 5,10,15,20-tetrakis{4-[N,N-di(4-thethoxylphenyl)amino-phenyl]}-porphyrin was prepared in gram scale through the direct condensation of pyrrole and 4-[bis(4-methoxyphenyl)amino]-benzaldehyde. Its Zn(II) and Cu(II) complexes exhibit excellent thermal and electrochemical stability, specifically a high hole Mobility and very favorable energetics for hole extraction that render them a new class of HTMs in organometallic halide PSCs. As expected, ZnP as HTM in PSCs affords a competitive power conversion efficiency (PCE) of 17.78%,which is comparable to that of the most powerful HTM of Spiro-MeOTAD (18.59%) under the same working conditions. Mean-While, the metal centers affect somewhat the photovoltaic performances that CuP as HTM produces a lower PCE of 15.36%. Notably, the PSCs employing ZnP show a much,better stability than Spiro-OMeTAD. Moreover, the two-porphyrin-based HTMs can be prepared from relatively cheap raw materials with a facile synthetic route. The results demonstrate that ZnP and CuP can be a new class of HTMs for efficient and stable PSCs. To the best of our knowledge, this is the best performance that porphyrin-based solar cells could show with PCE > 17%.

  • 7.
    Cheng, Ming
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.
    Aitola, Kerttu
    Chen, Cheng
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Zhang, Fuguo
    Liu, Peng
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Sveinbjornsson, Kari
    Hua, Yong
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Boschloo, Gerrit
    Sun, Licheng
    KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi. Dalian Univ Technol.
    Acceptor Donor Acceptor type ionic molecule materials for efficient perovskite solar cells and organic solar cells2016Inngår i: NANO ENERGY, ISSN 2211-2855, Vol. 30, s. 387-397Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Perovskite solar cells (PSCs) have attracted significant interest and hole transporting materials (HTMs) play important roles in achieving high efficiency. Here, we report additive free ionic type HTMs that are based on 2-ethylhexyloxy substituted benzodithiophene (BDT) core unit. With the ionization of end-capping pyridine units, the hole mobility and conductivity of molecular materials are greatly improved. Applied in PSCs, ionic molecular material M7-TFSI exhibits the highest efficiency of 17.4% in the absence of additives [lithium bis(trifluor-omethanesulfonyl)imide and 4-tert-butylpyridine]. The high efficiency is attributed to a deep highest occupied molecular orbital (HOMO) energy level, high hole mobility and high conductivity of M7-TFSI. Moreover, due to the higher hydrophobicity of M7-TFSI, the corresponding PSCs showed better stability than that of Spiro-OMeTAD based ones. In addition, the strong absorption and suitable energy levels of materials (M6, M7-13r and M7-TFSI) also qualify them as donor materials in organic solar cells (OSCs) and the devices containing M7-TFSI as donor material displayed an efficiency of 6.9%.

  • 8.
    Cheng, Ming
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.
    Chen, Cheng
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Aitola, Kerttu
    Zhang, Fuguo
    Hua, Yong
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Boschloo, Gerrit
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Sun, Licheng
    KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi. Dalian University of Technology (DUT), China.
    Highly Efficient Integrated Perovskite Solar Cells Containing a Small Molecule-PC70BM Bulk Heterojunction Layer with an Extended Photovoltaic Response Up to 900 nm2016Inngår i: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 28, nr 23, s. 8631-8639Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We demonstrate a high efficiency perovskite solar cell (PSC) integrated with a bulk heterojunction layer, based on acceptor-donor-acceptor (A-D-A) type hole transport material (HTM) and PC70BM composite, yielding improved photoresponse. Two A-D-A-structured hole transporting materials termed M3 and M4 were designed and synthesized. Applied as HTMs in PSCs, power conversion efficiencies (PCEs) of 14.8% and 12.3% were obtained with M3 and M4, respectively. The HTMs M3 and M4 show competitive absorption, but do not contribute to photocurrent, resulting in low current density. This issue was solved by mixing the HTMs with PC70BM to form a bulk heterojunction (BHJ) layer and integrating this layer into the PSC as hole transport layer (HTL). Through careful interface optimization, the (FAPbI(3))(0.85)(MAPbBr(3))(0.15)/HTM:PC70BM integrated devices showed improved efficiencies of 16.2% and 15.0%, respectively. More importantly, the incident-photon-to-current conversion efficiency (IPCE) spectrum shows that the photoresponse is extended to 900 nm by integrating the M4:PC70BM based BHJ and (FAPbI(3))(0.85)(MAPbBr(3))(0.15) layers.

  • 9.
    Cheng, Ming
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.
    Li, Yuanyuan
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Safdari, Majid
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Chen, Cheng
    Liu, Peng
    KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Tillämpad materialfysik. KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Sun, Licheng
    KTH, Skolan för kemivetenskap (CHE), Kemi.
    Efficient Perovskite Solar Cells Based on a Solution Processable Nickel(II) Phthalocyanine and Vanadium Oxide Integrated Hole Transport Layer2017Inngår i: Advanced Energy Materials, ISSN 1614-6832, Vol. 7, nr 14, artikkel-id 1602556Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An organic-inorganic integrated hole transport layer (HTL) composed of the solution-processable nickel phthalocyanine (NiPc) abbreviated NiPc-(OBu)(8) and vanadium(V) oxide (V2O5) is successfully incorporated into structured mesoporous perovskite solar cells (PSCs). The optimized PSCs show the highest stabilized power conversion efficiency of up to 16.8% and good stability under dark ambient conditions. These results highlight the potential application of organic-inorganic integrated HTLs in PSCs.

  • 10.
    Forsberg, Kerstin
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik.
    Rodríguez Varela, Raquel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik.
    Martínez, Joaquin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik.
    Kloo, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi.
    Rasmuson, Åke C.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik.
    Processing of a rare earth element concentrate by hollow fibre supported liquid membrane extraction2017Konferansepaper (Fagfellevurdert)
  • 11.
    Gao, Jiajia
    et al.
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    El-Zohry, Ahmed M.
    Uppsala Univ, Angstrom Lab, Dept Chem, Box 523, SE-75120 Uppsala, Sweden..
    Trilaksana, Herri
    Flinders Univ S Australia, Flinders Ctr NanoScale Sci & Technol CNST, Adelaide, SA 5042, Australia..
    Gabrielsson, Erik
    Dyenamo AB, Greenhouse Labs, Tekn Ringen 38A, SE-11428 Stockholm, Sweden..
    Leandri, Valentina
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    Ellis, Hanna
    Uppsala Univ, Angstrom Lab, Dept Chem, Box 523, SE-75120 Uppsala, Sweden..
    D'Amario, Luca
    Uppsala Univ, Angstrom Lab, Dept Chem, Box 523, SE-75120 Uppsala, Sweden..
    Safdari, Majid
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    Gardner, James M.
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD. KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    Andersson, Gunther
    Flinders Univ S Australia, Flinders Ctr NanoScale Sci & Technol CNST, Adelaide, SA 5042, Australia..
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD. KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    Light-Induced Interfacial Dynamics Dramatically Improve the Photocurrent in Dye-Sensitized Solar Cells: An Electrolyte Effect2018Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 31, s. 26241-26247Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A significant increase in the photocurrent generation during light soaking for solar cells sensitized by the triphenylamine-based D-pi-A organic dyes (PD2 and LEG1) and mediated by cobalt bipyridine redox complexes has been observed and investigated. The crucial role of the electrolyte has been identified in the performance improvement. Control experiments based on a pretreatment strategy reveals TBP as the origin. The increase in the current and IPCE has been interpreted by the interfacial charge-transfer kinetics studies. A slow component in the injection kinetics was exposed for this system. This change explains the increase in the electron lifetime and collection efficiency. Photoelectron spectroscopic measurements show energy shifts at the dye/TiO2 interface, leading us to formulate a hypothesis with respect to an electrolyte induced dye reorganization at the surface.

  • 12.
    Gao, Jiajia
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Fischer, Andreas C.
    KTH, Skolan för elektro- och systemteknik (EES), Mikro- och nanosystemteknik.
    Svensson, Per H.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Crystallography as Forensic Tool for Understanding Electrolyte Degradation in Dye-sensitized Solar Cells2017Inngår i: CHEMISTRYSELECT, ISSN 2365-6549, Vol. 2, nr 4, s. 1675-1680Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The precipitation of solid compounds from model electrolytes for liquid dye-sensitized solar cells has a story to tell regarding decomposition processes to be expected in such systems. Of course, the crystal lattice energy for a specific crystalline compounds plays a role in what compound that will eventually precipitate, but the compounds nevertheless serve as indicators for what type of processes that take place in the solar cell electrolytes upon ageing. From the compounds isolated in this study we learn that both ligand exchange processes, double-salt precipitation and oxidation are degradation processes that should not be overlooked when formulating efficient and stable electrolytes for this type of electrochemical system.

  • 13. Hagfeldt, A.
    et al.
    Cappel, U. B.
    Boschloo, G.
    Sun, Licheng
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Organisk kemi.
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Pettersson, H.
    Gibson, E. A.
    Dye-sensitized photoelectrochemical cells2017Inngår i: McEvoy's Handbook of Photovoltaics: Fundamentals and Applications, Elsevier Inc. , 2017, s. 503-565Kapittel i bok, del av antologi (Annet vitenskapelig)
    Abstract [en]

    Production cost per peak watt of solar electricity produced is critical to various PV technologies and second-generation thin-film solar cells. The dye-sensitized solar cell (DSC), a molecular solar cell technology, has the potential to significantly lower production costs below previous PV technologies. DSC research groups have been established around the world. Integration into different products opens up new commercial opportunities for niche applications with large flexibilities in product shape, color, and transparency. 

  • 14.
    Hao, Yan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Yang, Wenxing
    Uppsala Univ, Dept Chem, Angstrom Lab, Phys Chem, SE-75120 Uppsala, Sweden.;Emory Univ, Dept Chem, 1515 Dickey Dr NE, Atlanta, GA 30322 USA..
    Karlsson, Karl Martin
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Cong, Jiayan
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Wang, Shihuai
    Uppsala Univ, Dept Chem, Angstrom Lab, Phys Chem, SE-75120 Uppsala, Sweden..
    Lo, Xing
    East China Univ Sci & Technol, Inst Fine Chem, Sch Chem & Mol Engn, Key Lab Adv Mat, Shanghai 200237, Peoples R China..
    Xu, Bo
    Uppsala Univ, Dept Chem, Angstrom Lab, Phys Chem, SE-75120 Uppsala, Sweden..
    Hua, Jianli
    East China Univ Sci & Technol, Inst Fine Chem, Sch Chem & Mol Engn, Key Lab Adv Mat, Shanghai 200237, Peoples R China..
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Boschloo, Gerrit
    Uppsala Univ, Dept Chem, Angstrom Lab, Phys Chem, SE-75120 Uppsala, Sweden..
    Efficient Dye-Sensitized Solar Cells with Voltages Exceeding 1 V through Exploring Tris(4-alkoxyphenyl)amine Mediators in Combination with the Tris(bipyridine) Cobalt Redox System2018Inngår i: ACS ENERGY LETTERS, ISSN 2380-8195, Vol. 3, nr 8, s. 1929-1937Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Tandem redox electrolytes, prepared by the addition of a tris(p-anisyl)amine mediator into classic tris(bipyridine)cobalt-based electrolytes, demonstrate favorable electron transfer and reduced energy loss in dye-sensitized solar cells. Here, we have successfully explored three tris(4-alkoxyphenyl)-amine mediators with bulky molecular structures and generated more effective tandem redox systems. This series of tandem redox electrolytes rendered solar cells with very high photovoltages exceeding 1 V, which approaches the theoretical voltage limit of tris(bipyridine)cobalt-based electrolytes. Solar cells with power conversion efficiencies of 9.7-11.0% under 1 sun illumination were manufactured. This corresponds to an efficiency improvement of up to 50% as compared to solar cells based on pure tris(bipyridine)cobalt-based electrolytes. The photovoltage increases with increasing steric effects of the tris(4-alkoxyphenyl)amine mediators, which is attributed to a retarded recombination kinetics. These results highlight the importance of structural design for optimized charge transfer at the sensitized semiconductor/electrolyte interface and provide insights for the future development of efficient dye-sensitized solar cells.

  • 15. Hogberg, Daniel
    et al.
    Soberats, Bartolome
    Yoshio, Masafumi
    Mizumura, Yurika
    Uchida, Satoshi
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Segawa, Hiroshi
    Kato, Takashi
    Self-Assembled Liquid-Crystalline Ion Conductors in Dye-Sensitized Solar Cells: Effects of Molecular Sensitizers on Their Performance2017Inngår i: CHEMPLUSCHEM, ISSN 2192-6506, Vol. 82, nr 6, s. 834-840Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Dye-sensitized solar cells employing nonvolatile liquid-crystalline (LC) electrolytes that form nanostructures capable of efficient ion transport are reported. The LC electrolyte consists of a cyclic carbonate-functionalized mesogen and an iodide-based ionic liquid that nanosegregates into lamellar structures exhibiting over four times higher ion conductivities parallel to the layers than perpendicular to the layers. The self-assembled ion pathways allow efficient ion transport in the semi-solid LC state. When used together with organic dyes, DSSCs employing these LC electrolytes show higher power conversion efficiency (PCE) than metal-organic dyes. This behavior is not observed for devices containing standard liquid electrolytes. The higher PCEs of the LC-based devices can be attributed to longer electron lifetimes (t) and higher electron densities in the photoelectrodes. The high concentration of iodide ions in the nanostructured pathways of the LC electrolyte is thought to induce reductive quenching of the ruthenium-based sensitizer, which competes with the electron injection process and lowers the t and electron densities of the TiO2.

  • 16.
    Hua, Yong
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Liu, Peng
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Li, Yuanyuan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik.
    Sun, Licheng
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Kloo, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Composite Hole-Transport Materials Based on a Metal-Organic Copper Complex and Spiro-OMeTAD for Efficient Perovskite Solar Cells2018Inngår i: SOLAR RRL, ISSN 2367-198X, Vol. 2, nr 5, artikkel-id UNSP 1700073Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Spiro-OMeTAD has been the most commonly used hole-transport material in perovskite solar cells. However, this material shows intrinisic drawbacks, such as low hole mobility and conductivity in its pristine form, as well as self-aggregation when deposited as thin film. These are not beneficial properties for efficient hole transport and extraction. In order to address these issues, we have designed a new type of composite hole-transport materials based on a new metal-organic copper complex (CuH) and Spiro-OMeTAD. The incorporation of the molecularly bulky HTM CuH into the Spiro-OMeTAD material efficiently improves the hole mobility and suppresses the aggregation in the Spiro-OMeTAD film. As a result, the conversion efficiencies obtained for perovskite solar cells based on the composite HTM system reached as high as 18.83%, which is superior to solar cells based on the individual hole-transport materials CuH (15.75%) or Spiro-OMeTAD (14.47%) under the same working conditions. These results show that composite HTM systems may constitute an effective strategy to further improve the efficiency of perovskite solar cells.

  • 17.
    Kloo, Lars
    et al.
    KTH, Tidigare Institutioner (före 2005), Kemi.
    Paulsson, H
    KTH, Tidigare Institutioner (före 2005), Kemi.
    Fischer, A
    Hagfeldt, A
    Room-temperature molten salt electrolytes for photoelectrochemical solar cells.2004Inngår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 227, s. U1538-U1538Artikkel i tidsskrift (Annet vitenskapelig)
  • 18.
    Leandri, Valentina
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Daniel, Quentin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Organisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Chen, Hong
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Organisk kemi.
    Sun, Licheng
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Organisk kemi.
    Gardner, James M.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Kloo, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Electronic and Structural Effects of Inner Sphere Coordination of Chloride to a Homoleptic Copper(II) Diimine Complex2018Inngår i: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 57, nr 8, s. 4556-4562Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The reaction of CuCl2 with 2,9-dimethyl-1,10-phenanthroline (dmp) does not lead to the formation of [Cu(dmp)(2)](Cl)(2) but instead to [Cu(dmp)(2)Cl]Cl, a 5-coordinated complex, in which one chloride is directly coordinated to the metal center. Attempts at removing the coordinated chloride by changing the counterion by metathesis were unsuccessful and resulted only in the exchange of the noncoordinated chloride, as confirmed from a crystal structure analysis. Complex [Cu-(dmp)(2)Cl]PF6 exhibits a reversible cyclic voltammogram characterized by a significant peak splitting between the reductive and oxidative waves (0.85 and 0.60 V vs NHE, respectively), with a half-wave potential E-1/2 = 0.73 V vs NHE. When reduced electrochemically, the complex does not convert into [Cu(dmp)(2)](+), as one may expect. Instead, [Cu(dmp)(2)](+) is isolated as a product when the reduction of [Cu(dmp)(2)Cl]PF6 is performed with L-ascorbic acid, as confirmed by electrochemistry, NMR spectroscopy, and diffractometry. [Cu(dmp)(2)](2+) complexes can be synthesized starting from Cu(II) salts with weakly and noncoordinating counterions, such as perchlorate. Growth of [Cu(dmp)(2)](ClO4)(2) crystals in acetonitrile results in a 5-coordinated complex, [Cu(dmp)(2)(CH3CN)](ClO4)(2), in which a solvent molecule is coordinated to the metal center. However, solvent coordination is associated with a dynamic decoordination-coordination behavior upon reduction and oxidation. Hence, the cyclic voltammogram of [Cu(dmp)(2)(CH3CN)](2+) is identical to the one of [Cu(dmp)(2)](+), if the measurements are performed in acetonitrile. The current results show that halide ions in precursors to Cu(II) metal-organic coordination compound synthesis, and most likely also other multivalent coordination centers, are not readily exchanged when exposed to presumed strongly binding and chelating ligand, and thus special care needs to be taken with respect to product characterization.

  • 19.
    Leandri, Valentina
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Liu, Peng
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Sadollahkhani, Azar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Safdari, Majid
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Kloo, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Gardner, James M.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Excited-State Dynamics of [Ru(bpy)(3)](2+) Thin Films on Sensitized TiO2 and ZrO22019Inngår i: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, Vol. 20, nr 4, s. 618-626Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The excited state dynamics of Tris(2,2 '-bipyridine)ruthenium(II) hexafluorophosphate, [Ru(bpy)(3)(PF6)(2)], was investigated on the surface of bare and sensitized TiO2 and ZrO2 films. The organic dyes LEG4 and MKA253 were selected as sensitizers. A Stern-Volmer plot of LEG4-sensitized TiO2 substrates with a spin-coated [Ru(bpy)(3)(PF6)(2)] layer on top shows considerable quenching of the emission of the latter. Interestingly, time-resolved emission spectroscopy reveals the presence of a fast-decay time component (25 +/- 5 ns), which is absent when the anatase TiO2 semiconductor is replaced by ZrO2. It should be specified that the positive redox potential of the ruthenium complex prevents electron transfer from the [Ru(bpy)(3)(PF6)(2)] ground state into the oxidized sensitizer. Therefore, we speculate that the fast-decay time component observed stems from excited-state electron transfer from [Ru(bpy)(3)(PF6)(2)] to the oxidized sensitizer. Solid-state dye sensitized solar cells (ssDSSCs) employing MKA253 and LEG4 dyes, with [Ru(bpy)(3)(PF6)(2)] as a hole-transporting material (HTM), exhibit 1.2 % and 1.1 % power conversion efficiency, respectively. This result illustrates the possibility of the hypothesized excited-state electron transfer.

  • 20. Li, J.
    et al.
    Yang, X.
    Yu, Z.
    Gurzadyan, G. G.
    Cheng, Ming
    KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.
    Zhang, F.
    Cong, Jiayan
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Wang, W.
    Wang, H.
    Li, X.
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Wang, M.
    Sun, Licheng
    KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.
    Efficient dye-sensitized solar cells with [copper(6,6′-dimethyl-2,2′-bipyridine)2]2+/1+ redox shuttle2017Inngår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 7, nr 8, s. 4611-4615Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The [copper(6,6′-dimethyl-2,2′-bipyridine)2]2+/1+ ([Cu(dmbp)2]2+/1+) redox couple, which possesses a distorted tetragonal geometry of a Cu(i) complex crystal and a distorted tetrahedral coordination geometry of Cu(ii) complex crystal, has been developed as a redox mediator in dye-sensitized solar cells (DSSCs). The energy of loss for dye regeneration was reduced with a very low but sufficient driving force of only 0.11 eV. A distinct increase in open-circuit voltage (VOC) was achieved and a remarkable power conversion efficiency of 10.3% was afforded at 100 mW cm−2 under AM 1.5G condition.

  • 21. Li, Xing
    et al.
    Xu, Bo
    KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Liu, Peng
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Hu, Yue
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Hua, Jianli
    Sun, Licheng
    KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Tian, He
    Molecular engineering of D-A-pi-A sensitizers for highly efficient solid-state dye-sensitized solar cells2017Inngår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, nr 7, s. 3157-3166Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Two newquinoxaline-based D-A-pi-A organic sensitizers AQ309 and AQ310 have been designed and synthesized employing 3,4-ethylenedioxythiophene (EDOT) and cyclopentadithiophene (CPDT) as plinker units, respectively. The new AQ309 and AQ310 dyes have been applied in all-solid-state dye-sensitized solar cells (ssDSSCs). An impressive record photoelectric conversion efficiency (PCE) of 8.0% for AQ310-based ssDSSCs using Spiro-OMeTAD as the hole transport material (HTM) was obtained under standard AM 1.5 (100 mW cm (2)) solar intensity. This clearly outperforms the PCE of the state-of-theart organic D-pi-A dye LEG4-based devices showing a PCE of 7.3% under the same conditions. Moreover, an excellent high PCE of 8.6% was also recorded for AQ310-based devices under 50% solar intensity. Meanwhile, the AQ310-based ssDSSCs showed a much longer electron lifetime according to the transient photovoltage decay measurement, demonstrating lower charge recombination losses in the devices. Photo-induced absorption spectroscopy (PIA) indicated that AQ310 could be more efficiently regenerated by Spiro-OMeTAD. These results show that molecular engineering is a promising strategy to develop D-A-pi-A organic sensitizers for highly efficient ssDSSCs.

  • 22.
    Liu, Peng
    et al.
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Wang, Linqin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Organisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Karlsson, Karl Martin
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Hao, Yan
    Uppsala Univ, Dept Chem, Angstrom Lab, Box 523, SE-75120 Uppsala, Sweden..
    Gao, Jiajia
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Xu, Bo
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH). KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Boschloo, Gerrit
    Uppsala Univ, Dept Chem, Angstrom Lab, Box 523, SE-75120 Uppsala, Sweden..
    Sun, Licheng
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi.
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi.
    Molecular Engineering of D-pi-A Type of Blue-Colored Dyes for Highly Efficient Solid-State Dye-Sensitized Solar Cells through Co-Sensitization2018Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 42, s. 35946-35952Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A novel blue-colored organic donor-pi-acceptor sensitizer, the so-called MKA16 dye, has been employed to construct solid-state dye-sensitized solar cells (ssDSSCs). Using 2,2',7-,7'-tetrakis(N,N-di-p-methoxyphenyl-amine) 9,9'-spirobifuorene (Spiro-OMeTAD) as hole-transport material, a good conversion efficiency of 5.8% was recorded for cells based on the MKA16 dye and a high photovoltage of 840 mV in comparison with 5.6% efficiency using the known (Dyenamo Blue) dye. By co-sensitization using the orange-colored D35 dye and MKA16 together, the solid-state solar cells showed an excellent efficiency of 7.5%, with a high photocurrent of 12.41 mA cm(-2) and open-circuit voltage of 850 mV. The results show that the photocurrent of ssDSSCs can be significantly improved by co-sensitization mainly attributed to the wider light absorption range contributing to the photocurrent. In addition, results from photo-induced absorption spectroscopy show that the dye regeneration is efficient in co-sensitized solar cells. The current results possible routes of improving the design of aesthetic and highly efficient ssDSSCs.

  • 23.
    Phuyal, Dibya
    et al.
    Uppsala Univ, Dept Phys & Astron, Solid State Phys, Angstrom Lab, Box 516, SE-75121 Uppsala, Sweden..
    Safdari, Majid
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Pazoki, Meysam
    Uppsala Univ, Dept Engn Sci, Solid State Phys, Angstrom Lab, SE-75121 Uppsala, Sweden..
    Liu, Peng
    KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Tillämpad materialfysik. KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Philippe, Bertrand
    Uppsala Univ, Dept Phys & Astron, Solid State Phys, Angstrom Lab, Box 516, SE-75121 Uppsala, Sweden..
    Kyashnina, Kristina O.
    ESRF, Rossendorf Beamline, CS40220, F-38043 Grenoble 9, France.;HZDR, Inst Resource Ecol, POB 510119, D-01314 Dresden, Germany..
    Karis, Olof
    Uppsala Univ, Dept Phys & Astron, Solid State Phys, Angstrom Lab, Box 516, SE-75121 Uppsala, Sweden..
    Butorin, Sergei M.
    Uppsala Univ, Dept Phys & Astron, Solid State Phys, Angstrom Lab, Box 516, SE-75121 Uppsala, Sweden..
    Rensmo, Hakan
    Uppsala Univ, Dept Phys & Astron, Solid State Phys, Angstrom Lab, Box 516, SE-75121 Uppsala, Sweden..
    Edvinsson, Tomas
    Uppsala Univ, Dept Engn Sci, Solid State Phys, Angstrom Lab, SE-75121 Uppsala, Sweden..
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Gardner, James M.
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Electronic Structure of Two-Dimensional Lead(II) Iodide Perovskites: An Experimental and Theoretical Study2018Inngår i: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 30, nr 15, s. 4959-4967Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Layered two-dimensional (2D) hybrid organic-inorganic perovskites (HOP) are promising materials for light-harvesting applications because of their chemical stability, wide flexibility in composition and dimensionality, and increases in photovoltaic power conversion efficiencies. Three 2D lead iodide perovskites were studied through various X-ray spectroscopic techniques to derive detailed electronic structures and band energetics profiles at a titania interface. Core-level and valence band photoelectron spectra of HOP were analyzed to resolve the electronic structure changes due to the reduced dimensionality of inorganic layers. The results show orbital narrowing when comparing the HOP, the layered precursor PbI2, and the conventional 3D (CH3NH3)PbI3 such that different localizations of band edge states and narrow band states are unambiguously due to the decrease in dimensionality of the layered HOPs. Support from density functional theory calculations provide further details on the interaction and band gap variations of the electronic structure. We observed an interlayer distance dependent dispersion in the near band edge electronic states. The results show how tuning the interlayer distance between the inorganic layers affects the electronic properties and provides important design principles for control of the interlayer charge transport properties, such as the change in effective charge masses as a function of the organic cation length. The results of these findings can be used to tune layered materials for optimal functionality and new applications.

  • 24.
    Safdari, Majid
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Fischer, Andreas C.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Xu, Bo
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD. KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.
    Kloo, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Gardner, James M.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Erratum to: Structure and function relationships in alkylammonium lead(II) iodide solar cells2015Inngår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 3, nr 17, s. 9317-9317Artikkel i tidsskrift (Fagfellevurdert)
  • 25.
    Safdari, Majid
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Fischer, Andreas
    KTH, Skolan för elektro- och systemteknik (EES), Mikro- och nanosystemteknik.
    Dvinskikh, Sergey V.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Furó, István
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Gardner, James M.
    KTH, Skolan för kemivetenskap (CHE), Kemi.
    Spectroscopic Material Characterization of Organic Lead Halide MaterialsManuskript (preprint) (Annet vitenskapelig)
  • 26.
    Safdari, Majid
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Phuyal, Dibya
    Liu, Ping
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Philippe, Bertrand
    Kvashnina, Kristina O.
    Butorin, Sergei M.
    Rensmo, Håkan
    Karis, Olof
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Gardner, James M.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Electronic structure of 2D Lead (II) Iodide Perovskites: An Experimental and Theoretical StudyManuskript (preprint) (Annet vitenskapelig)
  • 27.
    Safdari, Majid
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Phuyal, Dibya
    Philippe, Bertrand
    Svensson, Per H.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi. SP Process Development, Sweden .
    Butorin, Sergei M.
    Kvashnina, Kristina O.
    Rensmo, Håkan
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Gardner, James M.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Impact of Synthetic Route on Structural and Physical Properties of Butyl-1,4-Diammonium Lead Iodide Semiconductors2017Inngår i: Journal of Materials Chemistry A, ISSN 2050-7488Artikkel i tidsskrift (Fagfellevurdert)
  • 28.
    Sharmoukh, Walid
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi. Natl Res Ctr, Inorgan Chem Dept, Tahrir St, Giza 12622, Egypt.
    Cong, Jiayan
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Gao, Jiajia
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Liu, Peng
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Quentin, Daniel
    KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Molecular Engineering of D-D-pi-A-Based Organic Sensitizers for Enhanced Dye-Sensitized Solar Cell Performance2018Inngår i: ACS OMEGA, ISSN 2470-1343, Vol. 3, nr 4, s. 3819-3829Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A series of molecularly engineered and novel dyes WS1, WS2, WS3, and WS4, based on the D35 donor, 1-(4-hexylphenyl)-2,5-di(thiophen-2-yl)-1H-pyrrole and 4-(4-hexylphenyl)-4H-dithieno[3,2-b: 2', 3'-d] pyrrole as pi-conjugating linkers, were synthesized and compared to the well-known LEG4 dye. The performance of the dyes was investigated in combination with an electrolyte based on Co(II/III) complexes as redox shuttles. The electron recombination between the redox mediators in the electrolyte and the TiO2 interface decreases upon the introduction of 4-hexylybenzene entities on the 2,5-di(thiophen-2-yl)-1H-pyrrole and 4H-dithieno[3,2-b: 2', 3'-d] pyrrole linker units, probably because of steric hindrance. The open circuit photovoltage of WS1-, WS2-, WS3-, and WS4-based devices in combination with the Co(II/III)-based electrolyte are consistently higher than those based on a I-/I-3(-) electrolyte by 105, 147, 167, and 75 mV, respectively. The WS3-based devices show the highest power conversion efficiency of 7.4% at AM 1.5 G 100 mW/cm(2) illumination mainly attributable to the high open-circuit voltage (V-OC).

  • 29.
    Starkholm, Allan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Kloo, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Svensson, Per H.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Polyiodide Hybrid Perovskites: A Strategy To Convert Intrinsic 2D Systems into 3D Photovoltaic Materials2019Inngår i: ACS Applied Energy Materials, ISSN 2574-0962, Vol. 2, nr 1, s. 477-485Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Two new organic inorganic hybrid perovskite compounds, (Me3S)(2)Pb5I14*2I(2) (1) and (C8H11S)(2)Pb2I6*I-2 (2), have been synthesized and subsequently characterized in this study. The materials were synthesized from facile one-pot, one-step reactions of lead iodide, corresponding sulfide, methanol, iodine, and hydroiodic acid in the case of 2. Structural analysis reveals the presence of polyiodide entities in both compounds. Compound 1 contains triiodide anions, I-3(-), that are uniquely shared between the 2D inorganic slabs, forming a 3D network. Both 1 and 2 have I-2 molecules that are bridging the inorganic slabs through a structural motif that can be regarded as a tetraiodide anion, I-4(2-). Optical spectroscopy shows band gaps of 1.86 eV for 1 and 1.89 eV for 2. The optoelectronic properties were further investigated with band structure calculations. Single-crystal IV-characteristics of 1 show that the compound is photoactive confirming it as a promising photovoltaic candidate. Compound 1 highlights a novel strategy of designing 3D semiconducting hybrid materials by incorporating polyiodides to provide direct geometric and electronic connections between the semiconducting inorganic perovskite sheets.

  • 30.
    Tian, Lei
    et al.
    Uppsala Univ, Dept Chem, Angstrom Lab, Uppsala, Sweden..
    Fohlinger, Jens
    Uppsala Univ, Dept Chem, Angstrom Lab, Uppsala, Sweden..
    Zhang, Zhibin
    Uppsala Univ, Dept Engn Sci, Uppsala, Sweden..
    Pati, Palas Baran
    Uppsala Univ, Dept Chem, Angstrom Lab, Uppsala, Sweden..
    Lin, Junzhong
    Stockholm Univ, Dept Mat & Environm Chem, Stockholm, Sweden..
    Kubart, Tomas
    Uppsala Univ, Dept Engn Sci, Uppsala, Sweden..
    Hua, Yong
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi.
    Sun, Junliang
    Stockholm Univ, Dept Mat & Environm Chem, Stockholm, Sweden..
    Kloo, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi.
    Boschloo, Gerrit
    Uppsala Univ, Dept Chem, Angstrom Lab, Uppsala, Sweden..
    Hammarström, Leif
    Uppsala Univ, Dept Chem, Angstrom Lab, Uppsala, Sweden..
    Tian, Haining
    Uppsala Univ, Dept Chem, Angstrom Lab, Uppsala, Sweden..
    Solid state p-type dye sensitized NiO-dye-TiO2 core-shell solar cells2018Inngår i: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 54, nr 30, s. 3739-3742Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Solid state p-type dye sensitized NiO-dye-TiO2 core-shell solar cells with an organic dye PB6 were successfully fabricated for the first time. With Al2O3 as an inner barrier layer, the recombination process between injected holes in NiO and injected electrons in TiO2 was significantly suppressed and the charge transport time was also improved.

  • 31.
    Trilaksana, Herri
    et al.
    Flinders Univ S Australia, Coll Sci & Engn, Flinders Inst NanoScale Sci & Technol, GPO Box 2100, Adelaide, SA 5001, Australia.;Airlangga Univ, Dept Phys, Kampus C Mulyorejo, Surabaya 60115, Indonesia..
    Shearer, Cameron
    Flinders Univ S Australia, Coll Sci & Engn, Flinders Inst NanoScale Sci & Technol, GPO Box 2100, Adelaide, SA 5001, Australia..
    Kloo, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Andersson, Gunther G.
    Flinders Univ S Australia, Coll Sci & Engn, Flinders Inst NanoScale Sci & Technol, GPO Box 2100, Adelaide, SA 5001, Australia..
    Restructuring of Dye Layers in Dye Sensitized Solar Cells: Cooperative Adsorption of N719 and Chenodeoxycholic Acid on Titania2019Inngår i: ACS Applied Energy Materials, ISSN 2574-0962, Vol. 2, nr 1, s. 124-130Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The effect of the co-adsorbent chenodeoxycholic acid (CDCA) up to a concentration of 20 mM on the adsorption of the dye N719 onto titania has been investigated using neutral impact collision ion scattering spectroscopy. It is shown that the co-adsorption of CDCA changes the adsorption mode of N719 from multilayer toward monolayer. FT-IR spectroscopy shows that the adsorption of CDCA increases with increasing CDCA concentration. In contrast, the amount of N719 adsorbed onto titania shows a minimum at 10 mM CDCA, and the relationship between the amount of CDCA and of N719 adsorbed onto titania depends nonmonotonically on the CDCA concentration. The co-adsorption of CDCA and N719 can be described as cooperative. The effect is observed for both low and high N719 concentrations.

  • 32.
    Wang, Linqin
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Organisk kemi.
    Sheibani, Esmaeil
    Guo, Yu
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Zhang, Wei
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Li, Yuanyuan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Liu, Peng
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Xu, Bo
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Organisk kemi.
    Kloo, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Sun, Licheng
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Organisk kemi. Dalian Univ Technol, State Key Lab Fine Chem, Inst Artificial Photosynth, DUT KTH Joint Educ & Res Ctr Mol Devices, Dalian 116024, Peoples R China.
    Impact of Linking Topology on the Properties of Carbazole-Based Hole-Transport Materials and their Application in Solid-State Mesoscopic Solar Cells2019Inngår i: SOLAR RRL, ISSN 2367-198X, artikkel-id 1900196Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Carbazole is a promising core for the molecular design of hole-transport materials (HTMs) for solid-state mesoscopic solar cells (ssMSCs), such as solid-state dye-sensitized solar cells (ssDSSCs) and perovskite solar cells (PSCs) due to its low cost and excellent optoelectronic properties of its derivatives. Although carbazole-based HTMs are intensely investigated in ssMSCs and promising device performance is demonstrated, the fundamental understanding of the impact of linking topology on the properties of carbazole-based HTMs is lacking. Herein, the effect of the linking topology on the optical and electronic properties of a series of carbazole-based HTMs with 2,7-substitution and 3,6-substitution is systematically investigated. The results demonstrate that the 2,7-substituted carbazole-based HTMs display higher hole mobility and conductivity among this series of analogous molecules, thereby exhibiting better device performance. In addition, the conductivity of the HTMs is improved after light treatment, which explains the commonly observed light-soaking phenomenon of ssMSCs in general. All these carbazole-based HTMs are successfully applied in ssMSCs and one of the HTMs X50-based devices yield a promising efficiency of 6.8% and 19.2% in ssDSSCs and PSCs, respectively. This study provides guidance for the molecular design of effective carbazole-based HTMs for high-performance ssMSCs and related electronic devices.

  • 33.
    Wang, Linqin
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Organisk kemi.
    Zhang, Jinbao
    Monash Univ, Dept Mat Sci & Engn, 22 Alliance Lane, Clayton, Vic 3800, Australia..
    Liu, Peng
    KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Tillämpad materialfysik. KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Xu, Bo
    Uppsala Univ, Dept Chem, Angstrom Lab, Box 523, S-75120 Uppsala, Sweden..
    Zhang, Biaobiao
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Organisk kemi.
    Chen, Hong
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Organisk kemi.
    Inge, A. Ken
    Stockholm Univ, Dept Mat & Environm Chem MMK, SE-10691 Stockholm, Sweden..
    Li, Yuanyuan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wang, Haoxin
    Dalian Univ Technol, Inst Artificial Photosynth, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Cheng, Yi-Bing
    Monash Univ, Dept Mat Sci & Engn, 22 Alliance Lane, Clayton, Vic 3800, Australia..
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Sun, Licheng
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Organisk kemi. Dalian Univ Technol, Inst Artificial Photosynth, DUT, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Design and synthesis of dopant-free organic hole-transport materials for perovskite solar cells2018Inngår i: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 54, nr 69Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Two novel dopant-free hole-transport materials (HTMs) with spiro[dibenzo[c,h]xanthene-7,9-fluorene] (SDBXF) skeletons were prepared via facile synthesis routes. A power conversion efficiency of 15.9% in perovskite solar cells is attained by using one HTM without dopants, which is much higher than undoped Spiro-OMeTAD-based devices (10.8%). The crystal structures of both new HTMs were systematically investigated to reveal the reasons behind such differences in performance and to indicate the design principles of more advanced HTMs.

  • 34.
    Xu, Bo
    et al.
    Uppsala Univ, Angstrom Lab, Dept Chem, Phys Chem, S-75120 Uppsala, Sweden..
    Wrede, Sina
    Uppsala Univ, Angstrom Lab, Dept Chem, Phys Chem, S-75120 Uppsala, Sweden..
    Curtze, Allison
    Ohio State Univ, Dept Chem & Biochem, 100 West 18th Ave, Columbus, OH 43210 USA..
    Tian, Lei
    Uppsala Univ, Angstrom Lab, Dept Chem, Phys Chem, S-75120 Uppsala, Sweden..
    Pati, Palas Baran
    Uppsala Univ, Angstrom Lab, Dept Chem, Phys Chem, S-75120 Uppsala, Sweden..
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi. KTH Royal Inst Technol, Dept Chem, Appl Phys Chem, S-10044 Stockholm, Sweden..
    Wu, Yiying
    Ohio State Univ, Dept Chem & Biochem, 100 West 18th Ave, Columbus, OH 43210 USA..
    Tian, Haining
    Uppsala Univ, Angstrom Lab, Dept Chem, Phys Chem, S-75120 Uppsala, Sweden..
    An Indacenodithieno[3,2-b]thiophene-Based Organic Dye for Solid-State p-Type Dye-Sensitized Solar Cells2019Inngår i: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 12, nr 14, s. 3243-3248Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An indacenodithieno[3,2-b]thiophene (IDTT) unit is used as a linker moiety to design a new p-type dye-TIP-for solid-state p-type dye-sensitized solar cells. Solar cells based on the TIP dye offered an efficiency of 0.18 % with an open-circuit photovoltage of 550 mV and a short-circuit photocurrent density of 0.86 mA cm(-2), which is better than those of two reference dyes, PB6 and BH4. Charge lifetime experiments reveal that the IDTT linker-based TIP dye significantly suppresses charge recombination losses in the devices.

  • 35. Xu, Peng
    et al.
    Liu, Peng
    KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Tillämpad materialfysik.
    Li, Yuanyuan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Xu, B.
    Kloo, Lars
    KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Tillämpad materialfysik.
    Sun, Licheng
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Organisk kemi.
    Hua, Y.
    D-A-D-Typed Hole Transport Materials for Efficient Perovskite Solar Cells: Tuning Photovoltaic Properties via the Acceptor Group2018Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 23, s. 19697-19703Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Two D-A-D-structured hole-transport materials (YN1 and YN2) have been synthesized and used in perovskite solar cells. The two HTMs have low-lying HOMO levels and impressive mobility. Perovskite-based solar cells (PSCs) fabricated with YN2 showed a power conversion efficiency (PCE) value of 19.27% in ambient air, which is significantly higher than that of Spiro-OMeTAD (17.80%). PSCs based on YN1 showed an inferior PCE of 16.03%. We found that the incorporation of the stronger electron-withdrawing group in the HTM YN2 improves the PCE of PSCs. Furthermore, the YN2-based PSCs exhibit good long-term stability retaining 91.3% of its initial efficiency, whereas PSCs based on Spiro-OMeTAD retained only 42.2% after 1000 h lifetime (dark conditions). These promising results can provide a new strategy for the design of D-A-D HTMs for PSC applications in future.

  • 36.
    Yang, Wenxing
    et al.
    Uppsala Univ, Angstrom Lab, Dept Chem, Box 523, SE-75120 Uppsala, Sweden.;Imperial Coll London, Dept Chem, London SW7 2AZ, England..
    Hao, Yan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Kloo, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Boschloo, Gerrit
    Uppsala Univ, Angstrom Lab, Dept Chem, Box 523, SE-75120 Uppsala, Sweden..
    Carrier Dynamics of Dye Sensitized-TiO2 in Contact with Different Cobalt Complexes in the Presence of Tri(p-anisyl)amine Intermediates2018Inngår i: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 122, nr 26, s. 14345-14354Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Heterogeneous charge transfer processes at sensitized wide bandgap semiconductor surfaces are imperative for both fundamental knowledge and technical applications. Herein, we focus on the investigation of carrier dynamics of a triphenylamine-based dye, LEG4, sensitized TiO2 (LEG4/TiO2) in contact with two types of electrolyte systems: pure cobalt-based electrolytes and in combination with an organic donor, tri(p-anisyl)amine (TPAA). Four different cobalt redox systems with potentials spanning a 0.3 V range were studied, and the carrier recombination and regeneration kinetics were monitored both at low and at high TiO2 (e(-)) densities (1.3 X 10(18) and 1.3 X 10(19) cm(-3), respectively). The results reveal that the introduction of the TPAA intermediate more effectively suppress the recombination loss of TiO2 (e(-)) under high charge conditions, close to open-circuit, as compared to low charge conditions. As a result, the charge transfer from the cobalt complexes to the oxidized dyes is significantly improved by the addition of TPAA. Dye-sensitized solar cells fabricated with the TPAA-containing electrolytes demonstrate remarkable improvement in both V-OC and J(SC) and lead to more than 25% increase of the light-to-electricity conversion efficiency. Furthermore, an unprecedented detrimental impact of TPAA on the device performance was identified when the redox potential of the TPAA donor and the cobalt complexes are close. This is ascribed to the formation of TPAA(center dot+) which can act as an active recombination centers and thus lower the solar cell performance. These insights point at a strategy to enhance the lifetimes of electrons generated in sensitized semiconductor electrodes by overcoming the charge recombination between TiO2 and the oxidized dye under high carrier densities in the semiconductor substrate and offer practical guidance to the design of future efficient electrolyte systems for dye-sensitized solar cells.

  • 37. Zhang, J.
    et al.
    Hua, Yong
    KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Xu, Bo
    KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Yang, L.
    Liu, Peng
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Johansson, M. B.
    Vlachopoulos, N.
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Boschloo, G.
    Johansson, E. M. J.
    Sun, Licheng
    KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi. KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Hagfeldt, A.
    The Role of 3D Molecular Structural Control in New Hole Transport Materials Outperforming Spiro-OMeTAD in Perovskite Solar Cells2016Inngår i: Advanced Energy Materials, ISSN 1614-6832, Vol. 6, nr 19, artikkel-id 1601062Artikkel i tidsskrift (Fagfellevurdert)
  • 38.
    Zhang, Wei
    et al.
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Liu, Peng
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Sadollahkhani, Azar
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Li, Yuanyuan
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Zhang, Biaobiao
    KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.
    Zhang, Fuguo
    KTH, Skolan för kemivetenskap (CHE), Kemi, Organisk kemi.
    Safdari, Majid
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Hao, Yan
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Hua, Yong
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Kemi, Tillämpad fysikalisk kemi.
    Investigation of Triphenylamine (TPA)-Based Metal Complexes and Their Application in Perovskite Solar Cells2017Inngår i: ACS OMEGA, ISSN 2470-1343, Vol. 2, nr 12, s. 9231-9240Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Triphenylamine-based metal complexes were designed and synthesized via coordination to Ni(II), Cu(II), and Zn(II) using their respective acetate salts as the starting materials. The resulting metal complexes exhibit more negative energy levels (vs vacuum) as compared to 2,2', 7,7'-tetrakis(N, N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD), high hole extraction efficiency, but low hole mobilities and conductivities. Application of dopants typically used for Spiro-OMeTAD was not successful, indicating a more complicated mechanism of partial oxidation besides the redox potential. However, utilization as hole-transport material was successful, giving a highest efficiency of 11.1% under AM 1.5G solar illumination.

  • 39.
    Zhang, Wei
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Teoretisk kemi och biologi.
    Sadollahkhani, Azar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Teoretisk kemi och biologi.
    Li, Yuanyuan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Leandri, Valentina
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Gardner, James M.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Kloo, Lars
    KTH, Skolan för kemivetenskap (CHE), Centra, Molekylär elektronik, CMD.
    Mechanistic Insights from Functional Group Exchange Surface Passivation: A Combined Theoretical and Experimental Study2019Inngår i: ACS APPLIED ENERGY MATERIALS, ISSN 2574-0962, Vol. 2, nr 4, s. 2723-2733Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Four different functional groups including amino (-NH2), phosphine (-PH2), hydroxyl (-OH), and thiol (-SH) were combined with POSS (polyhedral oligomeric silsesquioxane) molecules to investigate how functional groups affect the surface passivation of POSS systems. Results from density-functional theory (DFT) calculations indicate that functional group amino (-NH2) with adsorption energy 86 (56) kJ mol(-1) is consistently better than that of thiol (-SH) with adsorption energy 68 (43) kJ mor(-1) for different passivation mechanisms. Theoretical studies on the analogous POSS-OH and POSS-PH2 systems show similar adsorption energies. Two of the systems were also investigated experimentally; aminopropyl isobutyl POSS (POSS-NH2) and mercaptopropyl isobutyl POSS (POSS-SH) were applied as passivation materials for MAPbI(3) (MA = methylammonium) perovskite and (FA)(0.85)(MA)(0.15)Pb(I-3)(0.85)(Br-3)(0)(.15)(FA = formamidinium) perovskite films. The same conclusion was drawn based on the results from contact angle studies, X-ray diffraction (XRD), and the stability of solar cells in ambient atmosphere, indicating the vital importance of choice of functional groups for passivation of the perovskite materials.

1 - 39 of 39
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf