Ändra sökning
Avgränsa sökresultatet
1 - 26 av 26
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abbadessa, Anna
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Oinonen, Petri
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. Ecohelix AB, Teknikringen 38, SE-10044 Stockholm, Sweden..
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Characterization of Two Novel Bio-based Materials from Pulping Process Side Streams: Ecohelix and CleanFlow Black Lignin2018Ingår i: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 13, nr 4, s. 7606-7627Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The characteristics of two novel types of technical lignin, namely Ecohelix (EH) and CleanFlow black lignin (CFBL), isolated from two different pulping process side streams, were analyzed. EH and CFBL were analyzed in terms of general composition, chemical functionalities, molar mass distribution, and thermal stability. For comparison, two relevant types of commercially available lignosulfonate and kraft lignin were used. The results showed that EH contains a large amount of sulfonated lignin, together with carbohydrates and ash. As such, it can be considered a lignin-carbohydrate hybrid molecule. CFBL was found to contain 91.5% Klason lignin and the lowest amount of carbohydrates (0.3%). EH showed the highest content of aliphatic OH groups (5.44 mmol/g) and CFBL a high content of phenols (4.73 mmol/g). EH had a molecular weight of 31.4 kDa and a sufficient thermal stability. CFBL had the lowest molecular weight (M-w = 2.0 kDa) and thermal stability of all kraft lignins analyzed in this study. These properties highlighted that EH is a suitable building block for material development and that CFBL is a promising material for the production of biofuel and biochemicals.

  • 2.
    Aminzadeh, Selda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Mattsson, Tuve
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Henriksson, Gunnar
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    On the crossflow membrane fractionation of lignoboost kraft lignin: Characterization of low molecular weight fractions2016Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 251Artikel i tidskrift (Övrigt vetenskapligt)
  • 3.
    Aminzadeh, Selda
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Zhang, Liming
    Henriksson, Gunnar
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    A possible explanation for the structural inhomogeneity of lignin in LCC networks2017Ingår i: Wood Science and Technology, ISSN 0043-7719, E-ISSN 1432-5225, Vol. 51, nr 6, s. 1365-1376Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Lignin has a very complex structure, and this is partly due to the monomers being connected by many different types of covalent bonds. Furthermore, there are multiple covalent bonds between lignin and polysaccharides in wood, and it is known that the structure of lignin covalently bound to the hemicellulose xylan is different to lignin bound to the hemicellulose glucomannan. Here, synthetic lignin (DHP) is synthesized at different pH and it is shown that lignin made at lower pH has a structure more similar to the lignin bound to xylan, i.e., having higher relative content of beta-O-4 ethers. It is hypothesized that xylan due to its carboxylic acids forms a locally lower pH and thus "direct" the lignin structure to have more beta-O-4 ethers. The biological significance of these results is discussed.

  • 4.
    Berglund, Jennie
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Azhar, Shoaib
    Lawoko, Martin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wohlert, Jakob
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    The structure of galactoglucomannan impacts the degradation under alkaline conditions2018Ingår i: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882XArtikel i tidskrift (Refereegranskat)
    Abstract [en]

    Galactoglucomannan (GGM) from sprucewas studied with respect to the degradation behavior inalkaline solution. Three reference systems includinggalactomannan from locust bean gum, glucomannanfrom konjac and the linear water-soluble carboxymethylcellulose were studied with focus onmolecular weight, sugar composition, degradationproducts, as well as formed oligomers, to identifyrelative structural changes in GGM. Initially allmannan polysaccharides showed a fast decrease inthe molecular weight, which became stable in the laterstage. The degradation of the mannan polysaccharidescould be described by a function corresponding to thesum of two first order reactions; one slow that wasascribed to peeling, and one fast that was connectedwith hydrolysis. The galactose side group wasstable under conditions used in this study (150 min,90 C, 0.5 M NaOH). This could suggest that, apartfrom the covalent connection to C6 in mannose, thegalactose substitutions also interact non-covalentlywith the backbone to stabilize the structure againstdegradation. Additionally, the combination of differentbackbone sugars seems to affect the stability of thepolysaccharides. For carboxymethyl cellulose thedegradation was linear over time which furthersuggests that the structure and sugar composition playan important role for the alkaline degradation. Moleculardynamics simulations gave details about theconformational behavior of GGM oligomers in watersolution, as well as interaction between the oligomersand hydroxide ions.

  • 5.
    Berglund, Jennie
    et al.
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Bergenstråhle, Malin
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Vilaplana, Francisco
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova. KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    d'Ortoli, Thibault Angles
    Stockholm Univ, Dept Organ Chem, Stockholm, Sweden..
    Widmalm, Goran
    Stockholm Univ, Dept Organ Chem, Stockholm, Sweden..
    Lawoko, Martin
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Lindström, Mikael
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Wohlert, Jakob
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    How the flexibility properties of hemicelluloses are affected by the glycosidic bonds between different backbone sugars - A molecular dynamics study2016Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 251Artikel i tidskrift (Övrigt vetenskapligt)
  • 6.
    Berglund, Jennie
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Farahani, Saina Kishani
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    de Carvalho, Danila Morais
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lawoko, Martin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wohlert, Jakob
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. AlbaNova University Centre.
    The influence of acetylation and sugar composition on the (in)solubility of mannans, their interaction with cellulose surfaces and thermal propertiesManuskript (preprint) (Övrigt vetenskapligt)
  • 7.
    Berglund, Jennie
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Kishani, Saina
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    de Carvalho, Danila Morais
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Lawoko, Martin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wohlert, Jakob
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    The influence of acetylation and sugar composition on the (in)solubility of mannans, their interaction with cellulose surfaces and thermal properties.Manuskript (preprint) (Övrigt vetenskapligt)
  • 8.
    Berglund, Jennie
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Mikkelsen, Deirdre
    Univ Queensland, Queensland Alliance Agr & Food Innovat, Ctr Nutr & Food Sci, ARC Ctr Excellence Plant Cell Walls, Brisbane, Qld, Australia..
    Flanagan, Bernadine
    Univ Queensland, Queensland Alliance Agr & Food Innovat, Ctr Nutr & Food Sci, ARC Ctr Excellence Plant Cell Walls, Brisbane, Qld, Australia..
    Dhital, Sushil
    Univ Queensland, Queensland Alliance Agr & Food Innovat, Ctr Nutr & Food Sci, ARC Ctr Excellence Plant Cell Walls, Brisbane, Qld, Australia..
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Yakubov, Gleb
    Univ Queensland, Sch Chem Engn, ARC Ctr Excellence Plant Cell Walls, Brisbane, Qld, Australia..
    Gidley, Michael
    Univ Queensland, Queensland Alliance Agr & Food Innovat, Ctr Nutr & Food Sci, ARC Ctr Excellence Plant Cell Walls, Brisbane, Qld, Australia..
    Vilaplana, Francisco
    KTH, Tidigare Institutioner (före 2005), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Hydrogels of bacterial cellulose and wood hemicelluloses as a model of plant secondary cell walls2019Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Artikel i tidskrift (Övrigt vetenskapligt)
  • 9.
    Berglund, Jennie
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Mikkelsen, Deirdre
    University of Queensland, Australia.
    Flanagan, Bernadine M.
    University of Queensland, Australia.
    Dhital, Sushil
    University of Queensland, Australia.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Yakubov, Gleb E.
    University of Queensland, Australia.
    Gidley, Michael J.
    University of Queensland, Australia.
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wood Hemicelluloses Exert Distinct Biomechanical Contributions in Bacterial Cellulose HydrogelsManuskript (preprint) (Övrigt vetenskapligt)
  • 10.
    Bi, Ran
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Huang, Shan
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Henriksson, Gunnar
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Träkemi och massateknologi.
    ISOLATION OF EXCEEDINGLY LOW OXYGEN CONSUMING FUNGAL STRAINS ABLE TO UTILIZE LIGNIN AS CARBON SOURCE2016Ingår i: Cellulose Chemistry and Technology, ISSN 0576-9787, Vol. 50, nr 7-8, s. 811-817Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Lignin biodegradation is normally related to aerobic microorganisms, and it is often claimed that microbes do not metabolize lignin as a carbon source. In this work, several fungal strains were isolated from the sediment of a small stream located in a forest and tested on agar plates with lignin as the only carbon source. All identified strains were Ascomycetes, Penicillium spinulosum, Pseudeurotium bakeri and Galactomyces geotrichum. When cultivated in shaking flasks with lignosulphonate as a carbon source, the lignin was consumed, and cell free culture filtrates appeared to depolymerize lignosulphonate to some extent. It is suggested that the strains detected are part of a symbiotic community and live in a microbiological niche in which they are able to utilize lignin residues left from brown rot and humus having extremely low oxygen content.

  • 11.
    Dogaris, Ioannis
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Study on tall oil solubility for improved resource recovery in chemical pulping of wood2019Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    Tall oil is one of the most valuable by products in chemical pulpingof wood and is considered an important renewable alternative to petroleum.Its fractions have a large spectrum of applications including chemicalprecursors, detergents and energy. High recovery of tall oil is important forthe economic, sustainability, and environmental profile of industrial chemicalpulping. The purpose of this study was to develop ways to increase the yieldof tall oil based on its solubility in black liquors.To investigate this in a controlled way, a model system with a “synthetic”black liquor and a complete methodology for soap skimming anddetermination of recovered tall oil was developed based on solvent extractionand colorimetric analysis with good reproducibility. This model system allowsinvestigations of different parameters in small scale with high control overdifferent conditions.The developed system was used to study the effect of fatty acid addition andthe effect of lignin content on improving tall oil recovery. The presence ofrosin acids in the black liquor significantly reduced soap separation, whileincreasing the fatty acid content up to 60-70% greatly improved soaprecovery. Addition of lignin reduced tall oil recovery in the case of liquors withmore than 50% fatty acids, but slightly increased recovery in liquors withmore than 50% rosin acids. Furthermore, the presence of some ligninseemed to promote separation of the tall oil (reduced its solubility), while highamounts led to inhibition of its recovery.The experimental results clearly indicated that manipulating the content offatty acids and/or lignin before the soap skimming step significantly affect thetall oil solubility, opening up for chemical ways to improve its recovery.However, experiments in real industrial liquors and pulp mill conditions shouldbe considered to assess the actual tall oil yield improvement and processeconomics.

  • 12.
    Ek, Monica
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Gellerstedt, Göran
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Ljungberg Textbook: Pulp and Paper Chemistry and Technology2007Bok (Refereegranskat)
  • 13.
    Giummarella, Nicola
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Salmén, Lennart
    Rise Bioecon, Drottning Kristinas Väg 61,Box 5604, SE-11486 Stockholm, Sweden.
    Lawoko, Martin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    On the effect of hemicellulose removal on cellulose-lignin interactions2017Ingår i: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 32, nr 4, s. 542-549Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In a recent study, it was suggested that there could be direct associations between cellulose and lignin in mild alkaline cooked pulps. The observation was based on studies showing that the molecular straining of lignin was similar to that of cellulose. This finding has serious ramifications for technical production of pulps as it could expand on what is known about recalcitrant lignin removal during pulping. Herein, we investigate the possible interaction between cellulose and lignin discussing possible mechanisms involved at the nano-and molecular-scales, and present support for that the removal of hemicellulose by hot water extraction or mild kraft pulping causes strong interactions between lignin and cellulose.

  • 14.
    Giummarella, Nicola
    et al.
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Royal Inst Technol, Wallenberg Wood Sci Ctr, Stockholm, Sweden..
    Zhang, Liming
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Fibre & Polymer Technol, Stockholm, Sweden..
    Henriksson, Gunnar
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Royal Inst Technol, Wallenberg Wood Sci Ctr, Stockholm, Sweden.;KTH, Fibre & Polymer Technol, Stockholm, Sweden..
    Lawoko, Martin
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center. KTH, Royal Inst Technol, Wallenberg Wood Sci Ctr, Stockholm, Sweden..
    Global protocol for the mild quantitative fractionation of lignin carbohydrate complexes (LCC)2016Ingår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 251Artikel i tidskrift (Övrigt vetenskapligt)
  • 15.
    Henriksson, Gunnar
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Berglund, Jennie
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wohlert, Jakob
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Lawoko, Martin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Aminzadeh, Selda
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Non-cellulose wood polysaccharides - a need for a stricter structural and functional classification?2018Ingår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Artikel i tidskrift (Övrigt vetenskapligt)
  • 16.
    Josefsson, Peter
    et al.
    KTH.
    Wågberg, Lars
    KTH.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    CELL 114-Mode of action of fungal cellulases studied using model cellulose films and a quartz crystal microbalance2007Ingår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 233, s. 773-773Artikel i tidskrift (Övrigt vetenskapligt)
  • 17.
    Martinez-Abad, Antonio
    et al.
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap.
    Berglund, Jennie
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Träkemi och massateknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Toriz, Guillermo
    Gatenholm, Paul
    Henriksson, Gunnar
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Wohlert, Jakob
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Vilaplana, Francisco
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Regular Motifs in Xylan Modulate Molecular Flexibility and Interactions with Cellulose Surfaces2017Ingår i: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 175, nr 4, s. 1579-1592Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Xylan is tightly associated with cellulose and lignin in secondary plant cell walls, contributing to its rigidity and structural integrity in vascular plants. However, the molecular features and the nanoscale forces that control the interactions among cellulose microfibrils, hemicelluloses, and lignin are still not well understood. Here, we combine comprehensive mass spectrometric glycan sequencing and molecular dynamics simulations to elucidate the substitution pattern in softwood xylans and to investigate the effect of distinct intramolecular motifs on xylan conformation and on the interaction with cellulose surfaces in Norway spruce (Picea abies). We confirm the presence of motifs with evenly spaced glycosyl decorations on the xylan backbone, together with minor motifs with consecutive glucuronation. These domains are differently enriched in xylan fractions extracted by alkali and subcritical water, which indicates their preferential positioning in the secondary plant cell wall ultrastructure. The flexibility of the 3-fold screw conformation of xylan in solution is enhanced by the presence of arabinofuranosyl decorations. Additionally, molecular dynamic simulations suggest that the glycosyl substitutions in xylan are not only sterically tolerated by the cellulose surfaces but that they increase the affinity for cellulose and favor the stabilization of the 2-fold screw conformation. This effect is more significant for the hydrophobic surface compared with the hydrophilic ones, which demonstrates the importance of nonpolar driving forces on the structural integrity of secondary plant cell walls. These novel molecular insights contribute to an improved understanding of the supramolecular architecture of plant secondary cell walls and have fundamental implications for overcoming lignocellulose recalcitrance and for the design of advanced wood-based materials.

  • 18.
    Martinez-Abad, Antonio
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Quero, Amparo Jimenez
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap.
    Berglund, Jennie
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Giummarella, Nicola
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. Wallenberg Wood Sci Ctr, Stockholm, Sweden.;KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden..
    Wohlert, Jakob
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Lawoko, Martin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Vilaplana, Francisco
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Glykovetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Influence of the molecular structure of wood hemicelluloses on the recalcitrance of lignocellulosic biomass2018Ingår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Artikel i tidskrift (Övrigt vetenskapligt)
  • 19.
    Martín-Yerga, Daniel
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Cornell, Ann M.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemiteknik, Tillämpad elektrokemi.
    Effects of Incorporated Iron or Cobalt on the Ethanol Oxidation Activity of Nickel (Oxy)Hydroxides in Alkaline Media2019Ingår i: Electrocatalysis, ISSN 1868-2529, E-ISSN 1868-5994Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nickel (oxy)hydroxides (NiOxHy) are promising cost-effective materials that exhibit a fair catalytic activity for the ethanol oxidation reaction (EOR) and could be used for sustainable energy conversion. Doping the NiOxHy structure with other metals could lead to enhanced catalytic properties but more research needs to be done to understand the role of the doping metal on the EOR. We prepared NiOxHy films doped with Fe or Co with different metallic ratios by electrodeposition and evaluated the EOR. We found a positive and negative effect on the catalytic activity after the incorporation of Co and Fe, respectively. Our results suggest that Ni atoms are the active sites for the EOR since Tafel slopes were similar on the binary and pristine nickel (oxy)hydroxides and that the formal potential of the Ni(II)/Ni(III) redox couple is a good descriptor for the EOR activity. This work also highlights the importance of controlled metal doping on catalysts and may help in the design and development of improved materials for the EOR.

  • 20. Mattsson, Tuve
    et al.
    Azhar, Shoaib
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Eriksson, Susanna
    Helander, Mikaela
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Henriksson, Gunnar
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Jedvert, Kerstin
    Lawoko, Martin
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Lindström, Mikael E.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi, Träkemi och massateknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    McKee, Lauren S.
    KTH, Skolan för bioteknologi (BIO), Glykovetenskap. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Oinonen, Petri
    KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Sevastyanova, Olena
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Westerberg, Niklas
    Theliander, Hans
    The Development of a Wood-based Materials-biorefinery2017Ingår i: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 12, nr 4, s. 9152-9182Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Several different methods for the extraction, separation, and purification of wood constituents were combined in this work as a unified process with the purpose of achieving a high overall efficiency of material extraction and utilization. This study aimed to present a laboratory-scale demonstrator biorefinery that illustrated how the different wood constituents could be separated from the wood matrix for later use in the production of new bio-based materials and chemicals by combining several approaches. This study builds on several publications and ongoing activities within the Wallenberg Wood Science Center (WWSC) in Sweden on the theme "From wood to material components." Combining the approaches developed in these WWSC projects - including mild steam explosion, membrane and chromatographic separation, enzymatic treatment and leaching, ionic liquid extraction, and fractionation together with Kraft pulping - formed an outline for a complete materials-biorefinery. The process steps involved were tested as integral steps in a linked process. The scale of operations ranged from the kilogram-scale to the gram-scale. The feasibility and efficiency of these process steps in a biorefinery system were assessed, based on the data, beginning with whole wood.

  • 21.
    Moser, Carl
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Backlund, Hanéle
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Xyloglucan for estimating the surface area of cellulose fibers2018Ingår i: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 33, nr 2, s. 194-199Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The hemicellulose xyloglucan can be utilized to measure exposed cellulose surfaces for pulp fibers. This was shown by correlating a refining series with the adsorbed amount of xyloglucan, and by swelling cellulose fibers to various degrees by increasing the charge density. The method is specific to cellulose and could be used to quantify refining or to determine hornification.

  • 22.
    Moser, Carl
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Improved dispersibility of once-dried cellulose nanofibers in the presence of glycerol2018Ingår i: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    To investigate the dispersibility of dried cellulose nanofibers (CNFs), various additions (glycerol, octanol, glycol, and sodium perchlorate) were added to CNFs prior to drying. Glycerol was the only species to show any significant effect on re-dispersibility. The sedimentation was slower, and the transmittance of the solution was comparable to that of its undried counterpart. Increasing the amount of glycerol showed a clear trend with regard to dispersibility. The mechanical properties of films were maintained for samples that were dried and redispersed in the presence of glycerol.

  • 23.
    Moser, Carl
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Lindström, Mikael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Structural aspects on the manufacturing of cellulose nanofibers from wood pulp fibers2019Ingår i: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 14, nr 1, s. 2269-2276Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The exact mechanism behind the disintegration of chemical pulp fiber into cellulose nanofibers is poorly understood. In this study, samples were subjected to various homogenization cycles, indicating that the mechanism is a stepwise process. In the earlier stages of the mechanical process, a large amount of macrofibrils were created as the larger structures disappeared. Upon mechanical treatment these macrofibrils disappeared despite the increasing yield of cellulose nanofibers. The proposed model expands the understanding of the disintegration pathway and may provide additional insight as to how wood cells are converted into microfibrils.

  • 24.
    Moser, Carl
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. Valmet AB, Sweden.
    Henriksson, Gunnar
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Lindström, Mikael E.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Specific surface area increase during cellulose nanofiber manufacturing related to energy input2016Ingår i: BioResources, ISSN 1930-2126, E-ISSN 1930-2126, Vol. 11, nr 3, s. 7124-7132Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Softwood fibers pretreated with a monocomponent endoglucanase were used to prepare a series of cellulose nanofiber qualities using a microfluidizer and 2 to 34 MWh ton-1 of energy input. The specific surface area was determined for the series using critical point drying and gas adsorption. Although the specific surface area reached a maximum of 430 m2 g-1 at 11 MWh ton-1, the nanofiber yield and transmittance continued to increase beyond this point, indicating that more energy is required to overcome possible friction caused by an interwoven nanofiber network unrelated to the specific surface area. A new method for estimating the surface area was investigated using xyloglucan adsorption in pure water. With this method it was possible to follow the disintegration past the point of maximum specific surface area. The technical significance of these findings is discussed.

  • 25.
    Zhao, Yadong
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Moser, Carl
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Transparent Composites Made from Tunicate Cellulose Membranes and Environmentally Friendly Polyester2018Ingår i: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 11, nr 10, s. 1728-1735Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A series of optically transparent composites were made by using tunicate cellulose membranes, in which the naturally organized cellulose microfibrillar network structure of tunicate tunics was preserved and used as the template and a solution of glycerol and citric acid at different molar ratios was used as the matrix. Polymerization through ester bond formation occurred at elevated temperatures without any catalyst, and water was released as the only byproduct. The obtained composites had a uniform and dense structure. Thus, the produced glycerol citrate polyester improved the transparency of the tunicate cellulose membrane while the cellulose membrane provided rigidity and strength to the prepared composite. The interaction between cellulose and polyester afforded the composites high thermal stability. Additionally, the composites were optically transparent and their shape, strength, and flexibility were adjustable by varying the formulation and reaction conditions. These composites of cellulose, glycerol, and citric acid are renewable and biocompatible and have many potential applications as structural materials in packaging, flexible displays, and solar cells.

  • 26.
    Zhao, Yadong
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Moser, Carl
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi. Valmet AB, Sundsvall, Sweden..
    Lindström, Mikael
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Henriksson, Gunnar
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Li, Jiebing
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Film formation and performance of different nanocelluloses obtained from different cellulose sources after different preparation processes2017Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Artikel i tidskrift (Övrigt vetenskapligt)
1 - 26 av 26
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf