Change search
Refine search result
12 1 - 50 of 61
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bhatti, Muhammad Khurram
    et al.
    Informat Technol Univ, Embedded Comp Lab, 346-B Ferozpur Rd, Lahore, Pakistan..
    Oz, Isil
    Izmir Inst Technol, Comp Engn Dept, Izmir, Turkey..
    Amin, Sarah
    Informat Technol Univ, Embedded Comp Lab, 346-B Ferozpur Rd, Lahore, Pakistan..
    Mushtaq, Maria
    Informat Technol Univ, Embedded Comp Lab, 346-B Ferozpur Rd, Lahore, Pakistan..
    Farooq, Umer
    Dhofar Univ, Dept Elect & Comp Engn, Salalah 211, Oman..
    Popov, Sergei
    SICS, Isafjordsgatan 22, S-16429 Kista, Sweden..
    Brorsson, Mats
    KTH, School of Electrical Engineering and Computer Science (EECS), Software and Computer systems, SCS.
    Locality-aware task scheduling for homogeneous parallel computing systems2018In: Computing, ISSN 0010-485X, E-ISSN 1436-5057, Vol. 100, no 6, p. 557-595Article in journal (Refereed)
    Abstract [en]

    In systems with complex many-core cache hierarchy, exploiting data locality can significantly reduce execution time and energy consumption of parallel applications. Locality can be exploited at various hardware and software layers. For instance, by implementing private and shared caches in a multi-level fashion, recent hardware designs are already optimised for locality. However, this would all be useless if the software scheduling does not cast the execution in a manner that promotes locality available in the programs themselves. Since programs for parallel systems consist of tasks executed simultaneously, task scheduling becomes crucial for the performance in multi-level cache architectures. This paper presents a heuristic algorithm for homogeneous multi-core systems called locality-aware task scheduling (LeTS). The LeTS heuristic is a work-conserving algorithm that takes into account both locality and load balancing in order to reduce the execution time of target applications. The working principle of LeTS is based on two distinctive phases, namely; working task group formation phase (WTG-FP) and working task group ordering phase (WTG-OP). The WTG-FP forms groups of tasks in order to capture data reuse across tasks while the WTG-OP determines an optimal order of execution for task groups that minimizes the reuse distance of shared data between tasks. We have performed experiments using randomly generated task graphs by varying three major performance parameters, namely: (1) communication to computation ratio (CCR) between 0.1 and 1.0, (2) application size, i.e., task graphs comprising of 50-, 100-, and 300-tasks per graph, and (3) number of cores with 2-, 4-, 8-, and 16-cores execution scenarios. We have also performed experiments using selected real-world applications. The LeTS heuristic reduces overall execution time of applications by exploiting inter-task data locality. Results show that LeTS outperforms state-of-the-art algorithms in amortizing inter-task communication cost.

  • 2. Cristofori, Valentina
    et al.
    Da Ros, Francesco
    Ozolins, Oskars
    Chaibi, Mohamed E.
    Bramerie, Laurent
    Ding, Yunhong
    Pang, Xiaodan
    Shen, Alexandre
    Gallet, Antonin
    Duan, Guang-Hua
    Hassan, Karim
    Olivier, Segolene
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Jacobsen, Gunnar
    Oxenlowe, Leif K.
    Peucheret, Christophe
    25-Gb/s Transmission Over 2.5-km SSMF by Silicon MRR Enhanced 1.55-mu m III-V/SOI DML2017In: IEEE Photonics Technology Letters, ISSN 1041-1135, E-ISSN 1941-0174, Vol. 29, no 12, p. 960-963Article in journal (Refereed)
    Abstract [en]

    The use of a micro-ring resonator (MRR) to enhance the modulation extinction ratio and dispersion tolerance of a directly modulated laser is experimentally investigated with a bit rate of 25 Gb/s as proposed for the next generation data center communications. The investigated system combines a 11-GHz 1.55-mu m directly modulated hybrid III-V/SOI DFB laser realized by bonding III-V materials (InGaAlAs) on a silicon-on-insulator (SOI) wafer and a silicon MRR also fabricated on SOI. Such a transmitter enables error-free transmission (BER < 10(-9)) at 25 Gb/s data rate over 2.5-km standard single mode fiber without dispersion compensation nor forward error correction. As both laser and MRR are fabricated on the SOI platform, they could be combined into a single device with enhanced performance, thus providing a cost-effective transmitter for short reach applications.

  • 3. Cristofori, Valentina
    et al.
    Da Ros, Francesco
    Ozolins, Oskars
    Chaibi, Mohamed E.
    Bramerie, Laurent
    Ding, Yunhong
    Pang, Xiaodan
    Shen, Alexandre
    Gallet, Antonin
    Duan, Guang-Hua
    Hassan, Karim
    Olivier, Segolene
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Jacobsen, Gunnar
    Oxenlowe, Leif K.
    Peucheret, Christophe
    25-Gb/s Transmission Over 2.5-km SSMF by Silicon MRR Enhanced 1.55-mu m III-V/SOI DML2017In: 30th Annual Conference of the IEEE Photonics Society  (IPC), Institute of Electrical and Electronics Engineers (IEEE), 2017, Vol. 2017, p. 357-360Conference paper (Refereed)
    Abstract [en]

    The use of a micro-ring resonator (MRR) to enhance the modulation extinction ratio and dispersion tolerance of a directly modulated laser (DML) is experimentally investigated with a bit rate of 25 Gb/s as proposed for the next generation data center communications. The investigated system combines a 11-GHz 1.55-mu m directly modulated hybrid III-V/SOI DFB laser realized by bonding III-V materials (InGaAIAs) on a silicon on-insulator (SOI) wafer and a silicon MRR also fabricated on SOL Such a transmitter enables error-free transmission (BER< 10(-9)) at 25 Gb/s data rate over 2.5-km SSMF without dispersion compensation nor forward error correction (FEC). As both laser and MRR are fabricated on the SOI platform, they could be combined into a single device with enhanced performance, thus providing a cost-effective transmitter for short reach applications.

  • 4.
    Da Ros, F.
    et al.
    Tech Univ Denmark, DTU Foton, DK-2800 Lyngby, Denmark..
    Cristofori, V.
    Tech Univ Denmark, DTU Foton, DK-2800 Lyngby, Denmark..
    Ozolins, O.
    Acreo Swedish ICT, NETLAB, SE-16425 Kista, Sweden..
    Chaibi, M. E.
    Univ Rennes 1, CNRS, ENSSAT, FOTON Lab,UMR 6082, F-22305 Lannion, France..
    Pang, X.
    Acreo Swedish ICT, NETLAB, SE-16425 Kista, Sweden..
    Jacobsen, G.
    Acreo Swedish ICT, NETLAB, SE-16425 Kista, Sweden..
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Galili, M.
    Tech Univ Denmark, DTU Foton, DK-2800 Lyngby, Denmark..
    Oxenlowe, L. K.
    Tech Univ Denmark, DTU Foton, DK-2800 Lyngby, Denmark..
    Peucheret, C.
    Univ Rennes 1, CNRS, ENSSAT, FOTON Lab,UMR 6082, F-22305 Lannion, France..
    4-PAM Dispersion-Uncompensated Transmission with Micro-Ring Resonator Enhanced 1.55-mu m DML2017In: 2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), IEEE , 2017Conference paper (Refereed)
    Abstract [en]

    Real-time transmission of 14-GBd 4-PAM signal is demonstrated by combining a commercial 1.55-mu m DML with a silicon MRR. BER below the HD-FEC threshold is measured after 26-km SSMF transmission without offline digital signal processing.

  • 5.
    Dyakov, S. A.
    et al.
    Skolkovo Inst Sci & Technol, Photon & Quantum Mat Ctr, Moscow 143025, Russia..
    Zhigunov, D. M.
    Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia..
    Marinins, A.
    KTH, School of Electrical Engineering (EES).
    Shalygina, O. A.
    Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia..
    Vabishchevich, P. P.
    Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia..
    Shcherbakov, M. R.
    Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia..
    Presnov, D. E.
    Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia.;Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia..
    Fedyanin, A. A.
    Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia..
    Kashkarov, P. K.
    Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia.;Natl Res Ctr Inst, Moscow 123182, Russia..
    Popov, S.
    KTH, School of Electrical Engineering (EES).
    Gippius, N. A.
    Skolkovo Inst Sci & Technol, Photon & Quantum Mat Ctr, Moscow 143025, Russia..
    Tikhodeev, S. G.
    Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia.;AM Prokhorov Gen Phys Inst, Moscow 119991, Russia..
    Plasmon induced modification of silicon nanocrystals photoluminescence in presence of gold nanostripes2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 4911Article in journal (Refereed)
    Abstract [en]

    We report on the results of theoretical and experimental studies of photoluminescense of silicon nanocrystals in the proximity to plasmonic modes of different types. In the studied samples, the type of plasmonic mode is determined by the filling ratio of a one-dimensional array of gold stripes which covers the thin film with silicon nanocrystals on a quartz substrate. We analyze the extinction, photoluminesce spectra and decay kinetics of silicon nanocrystals and show that the incident and emitted light is coupled to the corresponding plasmonic mode. We demonstrate the modification of the extinction and photoluminesce spectra under the transition from wide to narrow gold stripes. The experimental extinction and photoluminescense spectra are in good agreement with theoretical calculations performed by the rigorous coupled wave analysis. We study the contribution of individual silicon nanocrystals to the overall photoluminescense intensity, depending on their spacial position inside the structure.

  • 6. El-Taher, Atalla
    et al.
    Pang, Xiaodan
    RISE ACREO AB.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Jacobsen, Gunnar
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Sergeyev, Sergey
    Noise characterization and transmission evaluation of unrepeated Raman amplified DP-16QAM link2015In: Optical Fiber Communication Conference, 2015Conference paper (Refereed)
    Abstract [en]

    Impairments characterization and performance evaluation of Raman amplified unrepeated DP-16QAM transmissions arc conducted, Experimental results indicate that small gain in forward direction enhance the system signal-to-noise ratio for longer reach without introducing noticeable penalty.

  • 7.
    Hong, Xuezhi
    et al.
    KTH, School of Information and Communication Technology (ICT). South China Normal University, China.
    Ozolins, O.
    Guo, C.
    Pang, X.
    Zhang, J.
    Navarro, J. R.
    Kakkar, Aditya
    KTH, School of Information and Communication Technology (ICT).
    Schatz, Richard
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Westergren, Urban
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Jacobsen, G.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab). South China Normal University, China.
    1.55-jnm EML-based DMT transmission with nonlinearity-aware time domain super-nyquist image induced aliasing2017In: 2017 Optical Fiber Communications Conference and Exhibition, OFC 2017 - Proceedings, Institute of Electrical and Electronics Engineers Inc. , 2017Conference paper (Refereed)
    Abstract [en]

    We experimentally demonstrate a DMT transmission system with 1.55-μm EML using nonlinearity-aware time domain super-Nyquist image induced aliasing. Compared with linear equalization, the capacity is improved by ∼16.8%(33.1%) with proposed method for 4(40) km transmission.

  • 8.
    Hong, Xuezhi
    et al.
    KTH, School of Information and Communication Technology (ICT). South China Normal Univ, Peoples R China.
    Ozolins, Oskars
    Guo, Changjian
    Pang, Xiaodan
    Zhang, Junwei
    Navarro, Jaime Rodrigo
    Kakkar, Aditya
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Schatz, Richard
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Westergren, Urban
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Jacobsen, Gunnar
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab). South China Normal Univ, Peoples R China.
    1.55-mu m EML-based DMT Transmission with Nonlinearity-Aware Time Domain Super-Nyquist Image Induced Aliasing2017In: 2017 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), IEEE , 2017Conference paper (Refereed)
    Abstract [en]

    We experimentally demonstrate a DMT transmission system with 1.55-mu m EML using nonlinearity-aware time domain super-Nyquist image induced aliasing. Compared with linear equalization, the capacity is improved by similar to 16.8%(33.1%) with proposed method for 4(40) km transmission.

  • 9. Jia, Shi
    et al.
    Pang, Xiaodan
    KTH, School of Information and Communication Technology (ICT). RISE Acreo AB, NETLAB, SE-16425 Kista, Sweden.
    Ozolins, Oskars
    Yu, Xianbin
    Hu, Hao
    Yu, Jinlong
    Guan, Pengyu
    Da Ros, Francesco
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT).
    Jacobsen, Gunnar
    Galili, Michael
    Morioka, Toshio
    Zibar, Darko
    Oxenlowe, Leif K.
    0.4 THz Photonic-Wireless Link With 106 Gb/s Single Channel Bitrate2018In: Journal of Lightwave Technology, ISSN 0733-8724, E-ISSN 1558-2213, Vol. 36, no 2, p. 610-616Article in journal (Refereed)
    Abstract [en]

    To accommodate the demand of exponentially increased global wireless data traffic, the prospective data rates for wireless communication in the market place will soon reach 100 Gb/s and beyond. In the lab environment, wireless transmission throughput has been elevated to the level of over 100 Gb/s attributed to the development of photonic-assisted millimeter wave and terahertz (THz) technologies. However, most of recent demonstrations with over 100 Gb/s data rates are based on spatial or frequency division multiplexing techniques, resulting in increased system's complexity and energy consumption. Here, we experimentally demonstrate a single channel 0.4 THz photonic-wireless link achieving a net data rate of beyond 100 Gb/s by using a single pair of THz emitter and receiver, without employing any spatial/frequency division multiplexing techniques. The high throughput up to 106 Gb/s within a single THz channel is enabled by combining spectrally efficient modulation format, ultrabroadband THz transceiver and advanced digital signal processing routine. Besides that, our demonstration from system-wide implementation viewpoint also features high transmission stability, and hence shows its great potential to not only decrease the system's complexity, butalsomeet the requirements of prospective data rates for bandwidth-hungryshort-range wireless applications.

  • 10.
    Kakkar, Aditya
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Navarro, Jaime Rodrigo
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO. Networking and Transmission Laboratory (NETLAB), Acreo Swedish ICT, AB, SE-16425, Kista, Sweden.
    Schatz, Richard
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Pang, Xiaodan
    Ozolins, Oskars
    Udalcovs, Aleksejs
    Louchet, Hadrien
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Jacobsen, Gunnar
    Laser Frequency Noise in Coherent Optical Systems: Spectral Regimes and Impairments2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 844Article in journal (Refereed)
    Abstract [en]

    Coherent communication networks are based on the ability to use multiple dimensions of the lightwave together with electrical domain compensation of transmission impairments. Electrical-domain dispersion compensation (EDC) provides many advantages such as network flexibility and enhanced fiber nonlinearity tolerance, but makes the system more susceptible to laser frequency noise (FN), e.g. to the local oscillator FN in systems with post-reception EDC. Although this problem has been extensively studied, statistically, for links assuming lasers with white-FN, many questions remain unanswered. Particularly, the influence of a realistic non-white FN-spectrum due to e.g., the presence of 1/f-flicker and carrier induced noise remains elusive and a statistical analysis becomes insufficient. Here we provide an experimentally validated theory for coherent optical links with lasers having general non-white FN-spectrum and EDC. The fundamental reason of the increased susceptibility is shown to be FN-induced symbol displacement that causes timing jitter and/or inter/intra symbol interference. We establish that different regimes of the laser FN-spectrum cause a different set of impairments. The influence of the impairments due to some regimes can be reduced by optimizing the corresponding mitigation algorithms, while other regimes cause irretrievable impairments. Theoretical boundaries of these regimes and corresponding criteria applicable to system/laser design are provided.

  • 11.
    Kakkar, Aditya
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Olmedo, Miguel Iglesias
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Ozolins, Oskars
    Navarro, Jaime Rodrigo
    Pang, Xiaodan
    Schatz, Richard
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Louchet, Hadrien
    Jacobsen, Gunnar
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Overcoming EEPN in Coherent Transmission Systems2016In: 2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), IEEE conference proceedings, 2016Conference paper (Refereed)
    Abstract [en]

    We for the first time experimentally demonstrate a simple technique to overcome EEPN. Performance recovery from above FEC to <1 dB penalty for 28 Gbd 16-QAM over 520 km with high LO linewidth is achieved.

  • 12.
    Kakkar, Aditya
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO. Acreo Swedish ICTAB, Sweden.
    Rodrigo Navarro, Jaime
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO. Acreo Swedish ICTAB, Sweden.
    Pang, X.
    Ozolins, O.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Westergren, U.
    Jacobsen, G.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Low complexity timing recovery algorithm for PAM-8 in high speed direct detection short range links2017In: 2017 Optical Fiber Communications Conference and Exhibition, OFC 2017 - Proceedings, Institute of Electrical and Electronics Engineers Inc. , 2017Conference paper (Refereed)
    Abstract [en]

    We propose a low complexity timing algorithm for high order PAM. Experimental results demonstrate higher performance and lower complexity than conventional algorithms in a 32 Gbaud PAM-8 transmission over 4 km SMF links.

  • 13.
    Kakkar, Aditya
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO. Acreo Swedish ICT AB, Sweden.
    Rodrigo Navarro, Jaime
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO. Acreo Swedish ICT AB, Sweden.
    Pang, Xiaodan
    Ozolins, Oskars
    Schatz, Richard
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Westergren, Urban
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Jacobsen, Gunnar
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Low Complexity Timing Recovery Algorithm for PAM-8 in High Speed Direct Detection Short Range Links2017In: Optics InfoBase Conference Papers, Volume Part F40-OFC 2017, 2017, IEEE , 2017Conference paper (Refereed)
    Abstract [en]

    We propose a low complexity timing algorithm for high order PAM. Experimental results demonstrate higher performance and lower complexity than conventional algorithms in a 32 Gbaud PAM-8 transmission over 4 kin SMF links.

  • 14.
    Kakkar, Aditya
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Rodrigo Navarro, Jaime
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Pang, Xiaodan
    RISE ACREO AB.
    Ozolins, Oskars
    Nordwall, Fredrik
    Zibar, Darko
    Jacobsen, Gunnnar
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Influence of Lasers with Non-White Frequency Noise on the Design of Coherent Optical Links2017In: 2017 Optical Fiber Communications Conference and Exhibition, OFC 2017 - Proceedings, 2017, article id 7937006Conference paper (Refereed)
    Abstract [en]

    We experimentally demonstrate for a 28 Gbaud 64-QAM metro link that the LO frequency noise causes timing impairment. Results show the existence of LO frequency noise spectrum regimes where different design criteria apply.

  • 15.
    Koivurova, Matias
    et al.
    Univ Eastern Finland, Inst Photon, POB 111, FI-80101 Joensuu, Finland..
    Vasileva, Elena
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Complete spatial coherence characterization of quasi-random laser emission from dye doped transparent wood2018In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 26, no 10, p. 13474-13482Article in journal (Refereed)
    Abstract [en]

    We report on the experimental determination of the complete two coordinate spatial coherence function of light emitted by a quasi-random laser, implemented on recently introduced dye-doped transparent wood. The spatial coherence was measured by means of a double grating interferometer, which has some advantages over the standard Young's interferometer. Analysis of the spatial coherence reveals that emission from such a material can be considered as a superposition of several spatial modes produced by individual emitters within semi-ordered scattering medium. The overall degree of coherence, (gamma)over-bar, for this quasi-random laser was found to be 0.16 +/- 0.01, having possible applications in speckle free laser imaging and illumination.

  • 16.
    Leong, Miu Yoong
    et al.
    KTH. Acreo.
    Larsen, Knud J.
    Jacobsen, Gunnar
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Zibar, Darko
    Sergeyev, Sergey
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Low-complexity BCH codes with optimized interleavers for DQPSK systems with laser phase noise2017In: Photonic network communications, ISSN 1387-974X, E-ISSN 1572-8188, Vol. 33, no 3, p. 328-333Article in journal (Refereed)
    Abstract [en]

    The presence of high phase noise in addition to additive white Gaussian noise in coherent optical systems affects the performance of forward error correction (FEC) schemes. In this paper, we propose a simple scheme for such systems, using block interleavers and binary Bose-Chaudhuri-Hocquenghem (BCH) codes. The block interleavers are specifically optimized for differential quadrature phase shift keying modulation. We propose a method for selecting BCH codes that, together with the interleavers, achieve a target post-FEC bit error rate (BER). This combination of interleavers and BCH codes has very low implementation complexity. In addition, our approach is straightforward, requiring only short pre-FEC simulations to parameterize a model, based on which we select codes analytically. We aim to correct a pre-FEC BER of around . We evaluate the accuracy of our approach using numerical simulations. For a target post-FEC BER of , codes selected using our method result in BERs around 3 target and achieve the target with around 0.2 dB extra signal-to-noise ratio.

  • 17.
    Li, Yuanyuan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH Royal Inst Technol, Dept Fiber & Polymer Technol, Wallenberg Wood Sci Ctr, SE-10044 Stockholm, Sweden..
    Vasileva, Elena
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Sychugov, Ilya
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics. KTH Royal Inst Technol, Sch Engn Sci, Dept Appl Phys, SE-16440 Kista, Sweden..
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH Royal Inst Technol, Dept Fiber & Polymer Technol, Wallenberg Wood Sci Ctr, SE-10044 Stockholm, Sweden..
    Optically Transparent Wood: Recent Progress, Opportunities, and Challenges2018In: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071, Vol. 6, no 14, article id 1800059Article, review/survey (Refereed)
    Abstract [en]

    Transparent wood is an emerging load-bearing material reinvented from natural wood scaffolds with added light management functionalities. Such material shows promising properties for buildings and related structural applications, including its renewable and abundant origin, interesting optical properties, outstanding mechanical performance, low density, low thermal conductivity, and great potential for multifunctionalization. In this study, a detailed summary of recent progress on the transparent wood research topic is presented. Remaining questions and challenges related to transparent wood preparation, optical property measurements, and transparent wood modification and applications are discussed.

  • 18.
    Lin, Rui
    et al.
    KTH.
    Kerrebrouck, J. V.
    Pang, Xiaodan
    KTH.
    Verplaetse, M.
    Ozolins, O.
    Udalcovs, A.
    Zhang, Lu
    KTH.
    Gan, L.
    Tang, M.
    Fu, S.
    Schatz, Richard
    KTH.
    Westergren, Urban
    KTH.
    Popov, Sergei
    KTH.
    Liu, D.
    Tong, W.
    Keulenaer, T. D. E.
    Torfs, G.
    Bauwelinck, J.
    Yin, X.
    Chen, Jiajia
    KTH.
    Real-time 100 Gbps/λ/core NRZ and EDB IM/DD transmission over multicore fiber for intra-datacenter communication networks2018In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 26, no 8, p. 10519-10526Article in journal (Refereed)
    Abstract [en]

    A BiCMOS chip-based real-time intensity modulation/direct detection spatial division multiplexing system is experimentally demonstrated for both optical interconnects. 100 Gbps/λ/core electrical duobinary (EDB) transmission over 1 km 7-core multicore fiber (MCF) is carried out, achieving KP4 forward error correction (FEC) limit (BER < 2E-4). Using optical dispersion compensation, 7 × 100 Gbps/λ/core transmission of both non-return-to-zero (NRZ) and EDB signals over 10 km MCF transmission is achieved with BER lower than 7% overhead hard-decision FEC limit (BER < 3.8E-3). The integrated low complexity transceiver IC and analog signal processing approach make such a system highly attractive for the high-speed intra-datacenter interconnects.

  • 19.
    Lin, Rui
    et al.
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China.;KTH Royal Inst Technol, Electrum 229, Kista, Sweden..
    Pang, Xiaodan
    KTH.
    Van Kerrebrouck, Joris
    Univ Ghent, IMEC, Dept Informat Technol INTEC, IDLab, Ghent, Belgium..
    Verplaetse, Michiel
    Univ Ghent, IMEC, Dept Informat Technol INTEC, IDLab, Ghent, Belgium..
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Zhang, Lu
    KTH.
    Gan, Lin
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Tang, Ming
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Fu, Songnian
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Schatz, Richard
    KTH. KTH Royal Inst Technol, Electrum 229, Kista, Sweden..
    Westergren, Urban
    KTH. KTH Royal Inst Technol, Electrum 229, Kista, Sweden..
    Popov, Sergei
    KTH.
    Liu, Deming
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Tong, Weijun
    Yangtze Opt Fiber & Cable Joint Stock Ltd Co YOFC, Wuhan, Hubei, Peoples R China..
    De Keulenaer, Timothy
    Univ Ghent, IMEC, Spin Off IDLab, BiFAST, Ghent, Belgium..
    Torfs, Guy
    Univ Ghent, IMEC, Dept Informat Technol INTEC, IDLab, Ghent, Belgium..
    Bauwelinck, Johan
    Univ Ghent, IMEC, Dept Informat Technol INTEC, IDLab, Ghent, Belgium..
    Yin, Xin
    Univ Ghent, IMEC, Dept Informat Technol INTEC, IDLab, Ghent, Belgium..
    Chen, Jiajia
    KTH.
    Real-time 100 Gbps/lambda/core NRZ and EDB IM/DD Transmission over 10 km Multicore Fiber2018In: 2018 Optical Fiber Communications Conference and Exposition, OFC 2018 - Proceedings, Institute of Electrical and Electronics Engineers (IEEE), 2018Conference paper (Refereed)
    Abstract [en]

    A BiCMOS chip-based real-time IM/DD spatial division multiplexing system is experimentally demonstrated for short-reach communications. 100 Gbps/./core NRZ and EDB transmission is achieved below 7%-overhead HD-FEC limit after 10km 7-core fiber with optical dispersion compensation.

  • 20.
    Lin, Rui
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab). Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China.
    Van Kerrebrouck, Joris
    Univ Ghent, IMEC, IDLab, Dept Informat Technol INTEC, Ghent, Belgium..
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Verplaetse, Michiel
    Univ Ghent, IMEC, IDLab, Dept Informat Technol INTEC, Ghent, Belgium..
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Zhang, Lu
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab). Shanghai Jiao Tong Univ, Shanghai, Peoples R China..
    Gan, Lin
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Tang, Ming
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Fu, Songnian
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Westergren, Urban
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Liu, Deming
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Tong, Weijun
    Yangtze Opt Fiber & Cable Joint Stock Ltd Co YOFC, Wuhan, Hubei, Peoples R China..
    De Keulenaer, Timothy
    Univ Ghent, IMEC, Spin Off IDLab, BiFAST, Ghent, Belgium..
    Torfs, Guy
    Univ Ghent, IMEC, IDLab, Dept Informat Technol INTEC, Ghent, Belgium..
    Bauwelinck, Johan
    Univ Ghent, IMEC, IDLab, Dept Informat Technol INTEC, Ghent, Belgium..
    Yin, Xin
    Univ Ghent, IMEC, IDLab, Dept Informat Technol INTEC, Ghent, Belgium..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Real-time 100 Gbps/lambda/core NRZ and EDB IM/DD transmission over multicore fiber for intra-datacenter communication networks2018In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 26, no 8, p. 10519-10526Article in journal (Refereed)
    Abstract [en]

    A BiCMOS chip-based real-time intensity modulation/direct detection spatial division multiplexing system is experimentally demonstrated for both optical interconnects. 100 Gbps/lambda/core electrical duobinary (EDB) transmission over 1 km 7-core multicore fiber (MCF) is carried out, achieving KP4 forward error correction (FEC) limit (BER < 2E-4). Using optical dispersion compensation, 7 x 100 Gbps/lambda/core transmission of both non-retunito-zero (NRZ) and EDB signals over 10 km MCF transmission is achieved with BER lower than 7% overhead hard-decision FEC limit (BER < 3.8E-3). The integrated low complexity transceiver IC and analog signal processing approach make such a system highly attractive for the high-speed intra-datacenter interconnects.

  • 21.
    Lobov, G. S.
    et al.
    KTH, School of Information and Communication Technology (ICT).
    Marinins, A.
    KTH, School of Information and Communication Technology (ICT).
    Etcheverry, S.
    Zhao, Yichen
    KTH, School of Information and Communication Technology (ICT).
    Vasileva, Elena
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Sugunan, A.
    Laurell, F.
    Thylén, Lars
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Wosinski, L.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Östling, Mikael
    KTH, School of Information and Communication Technology (ICT).
    Toprak, M. S.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Direct birefringence and transmission modulation via dynamic alignment of P3HT nanofibers in an advanced opto-fluidic component2017In: Optical Materials Express, ISSN 2159-3930, E-ISSN 2159-3930, Vol. 7, no 1, p. 52-61Article in journal (Refereed)
    Abstract [en]

    Poly-3-hexylthiophene (P3HT) nanofibers are semiconducting high-aspect ratio nanostructures with anisotropic absorption and birefringence properties found at different regions of the optical spectrum. In addition, P3HT nanofibers possess an ability to be aligned by an external electric field, while being dispersed in a liquid. In this manuscript we show that such collective ordering of nanofibers, similar to liquid crystal material, significantly changes the properties of transmitted light. With a specially fabricated opto-fluidic component, we monitored the phase and transmission modulation of light propagating through the solution of P3HT nanofibers, being placed in the electric field with strength up to 0.1 V/μm. This report describes a technique for light modulation, which can be implemented in optical fiber-based devices or on-chip integrated components.

  • 22.
    Lobov, Gleb S.
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Marinins, Aleksandrs
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Etcheverry, Sebastian
    Zhao, Yichen
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Vasileva, Elena
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Sugunan, Abhilash
    Laurell, Fredrik
    KTH, School of Engineering Sciences (SCI), Applied Physics, Laser Physics.
    Thylén, Lars
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology. Hewlett Packard Enterprise Labs, USA.
    Wosinski, Lech
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Östling, Mikael
    KTH, School of Information and Communication Technology (ICT), Elektronics, Integrated devices and circuits.
    Toprak, Muhammet S.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Direct birefringence and transmission modulation via dynamic alignment of P3HT nanofibers in an advanced opto-fluidic component2017In: Optical Materials Express, ISSN 2159-3930, E-ISSN 2159-3930, Vol. 7, no 1, p. 52-61Article in journal (Refereed)
    Abstract [en]

    Poly-3-hexylthiophene (P3HT) nanofibers are semiconducting high-aspect ratio nanostructures with anisotropic absorption and birefringence properties found at different regions of the optical spectrum. In addition, P3HT nanofibers possess an ability to be aligned by an external electric field, while being dispersed in a liquid. In this manuscript we show that such collective ordering of nanofibers, similar to liquid crystal material, significantly changes the properties of transmitted light. With a specially fabricated opto-fluidic component, we monitored the phase and transmission modulation of light propagating through the solution of P3HT nanofibers, being placed in the electric field with strength up to 0.1 V/mu m. This report describes a technique for light modulation, which can be implemented in optical fiber-based devices or on-chip integrated components.

  • 23.
    Lobov, Gleb
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Zhao, Yichen
    KTH, School of Information and Communication Technology (ICT).
    Marinins, Aleksandrs
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Yan, Min
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Li, Jiantong
    KTH, School of Information and Communication Technology (ICT).
    Sugunan, A.
    Thylén, Lars
    KTH, School of Biotechnology (BIO). Hewlett-Packard Laboratories, United States.
    Wosinski, L.ech
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Fotonik och mikrovågsteknik, FMI.
    Östling, Mikael
    KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Dynamic Manipulation of Optical Anisotropy of Suspended Poly-3-hexylthiophene Nanofibers2016In: Advanced Optical Materials, ISSN 2195-1071, Vol. 4, no 10, p. 1651-1656Article in journal (Refereed)
    Abstract [en]

    Poly-3-hexylthiophene (P3HT) nanofibers are 1D crystalline semiconducting nanostructures, which are known for their application in photovoltaics. Due to the internal arrangement, P3HT nanofibers possess optical anisotropy, which can be enhanced on a macroscale if nanofibers are aligned. Alternating electric field, applied to a solution with dispersed nanofibers, causes their alignment and serves as a method to produce solid layers with ordered nanofibers. The transmission ellipsometry measurements demonstrate the dichroic absorption and birefringence of ordered nanofibers in a wide spectral range of 400–1700 nm. Moreover, the length of nanofibers has a crucial impact on their degree of alignment. Using electric birefringence technique, it is shown that external electric field applied to the solution with P3HT nanofibers can cause direct birefringence modulation. Dynamic alignment of dispersed nanofibers changes the refractive index of the solution and, therefore, the polarization of transmitted light. A reversible reorientation of nanofibers is organized by using a quadrupole configuration of poling electrodes. With further development, the described method can be used in the area of active optical fiber components, lab-on-chip or sensors. It also reveals the potential of 1D conducting polymeric structures as objects whose highly anisotropic properties can be implemented in electro-optical applications.​

  • 24.
    Loiko, Pavel
    et al.
    ITMO Univ, 49 Kronverkskiy Pr, St Petersburg 197101, Russia..
    Maria Serres, Josep
    Univ Rovira & Virgili, Fis & Cristallog Mat & Nanomat FiCMA FiCNA, Campus Sescelades,C Marcelli Domingo S-N, E-43007 Tarragona, Spain..
    Delekta, Szymon Sollami
    KTH, School of Information and Communication Technology (ICT).
    Kifle, Esrom
    Univ Rovira & Virgili, Fis & Cristallog Mat & Nanomat FiCMA FiCNA, Campus Sescelades,C Marcelli Domingo S-N, E-43007 Tarragona, Spain..
    Mateos, Xavier
    Univ Rovira & Virgili, Fis & Cristallog Mat & Nanomat FiCMA FiCNA, Campus Sescelades,C Marcelli Domingo S-N, E-43007 Tarragona, Spain.;Max Born Inst Nonlinear Opt & Short Pulse Spect, 2A Max Born Str, D-12489 Berlin, Germany..
    Baranov, Alexander
    ITMO Univ, 49 Kronverkskiy Pr, St Petersburg 197101, Russia..
    Aguilo, Magdalena
    Univ Rovira & Virgili, Fis & Cristallog Mat & Nanomat FiCMA FiCNA, Campus Sescelades,C Marcelli Domingo S-N, E-43007 Tarragona, Spain..
    Diaz, Francesc
    Univ Rovira & Virgili, Fis & Cristallog Mat & Nanomat FiCMA FiCNA, Campus Sescelades,C Marcelli Domingo S-N, E-43007 Tarragona, Spain..
    Griebner, Uwe
    Max Born Inst Nonlinear Opt & Short Pulse Spect, 2A Max Born Str, D-12489 Berlin, Germany..
    Petrov, Valentin
    Max Born Inst Nonlinear Opt & Short Pulse Spect, 2A Max Born Str, D-12489 Berlin, Germany..
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Li, Jiantong
    KTH, School of Electrical Engineering and Computer Science (EECS), Electronics, Integrated devices and circuits.
    Östling, Mikael
    KTH, School of Information and Communication Technology (ICT).
    Inkjet-Printing of Graphene Saturable Absorbers for similar to 2 mu m Bulk and Waveguide Lasers2017In: 2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), IEEE , 2017Conference paper (Refereed)
    Abstract [en]

    We report on inkjet-printing of graphene saturable absorbers (SAs) suitable for passive Q-switching of similar to 2-mu m bulk and waveguide lasers. Using graphene-SA in a microchip Tm:KLu(WO4)(2) laser, 1.2 mu J/136 ns pulses are generated at 1917 nm.

  • 25.
    Lu, Yang
    et al.
    Hangzhou Dianzi Univ, Coll Commun Engn, Hangzhou, Zhejiang, Peoples R China..
    Agrell, Erik
    Chalmers Univ Technol, Dept Elect Engn, Gothenburg, Sweden..
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab). RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Hong, Xuezhi
    South China Normal Univ, ZJU SCNU Joint Res Ctr Photon, Guangzhou 510006, Guangdong, Peoples R China..
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Cheng, Yuxin
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, Gunnar
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Multi-channel collision-free reception for optical interconnects2018In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 26, no 10, p. 13214-13222Article in journal (Refereed)
    Abstract [en]

    A multi channel reception scheme that allows each node to receive an arbitrary set of wavelengths simultaneously (i.e., collision-free) is proposed for optical interconnects. The proposed scheme only needs to use a few receivers and fixed-wavelength filters that are designed based on error-control coding theory. Experiments with up to four channel collision-free reception units are carried out to demonstrate the feasibility of the proposed scheme.

  • 26. Mardoyan, H.
    et al.
    Jorge, F.
    Ozolins, O.
    Estaran, J. M.
    Udalcovs, A.
    Konczykowska, A.
    Riet, M.
    Duval, B.
    Nodjiadjim, V.
    Dupuy, J. -Y
    Pang, Xiaodan
    KTH, School of Information and Communication Technology (ICT). RISE Acreo AB, Sweden.
    Westergren, Urban
    KTH, School of Information and Communication Technology (ICT).
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT).
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT).
    Bigo, S.
    204-GBaud On-OffKeying transmitter for inter-data center communications2018In: Optics InfoBase Conference Papers, Optics Info Base, Optical Society of America, 2018Conference paper (Refereed)
    Abstract [en]

    We demonstrate an on-offkeyed transmitter with direct detection, at record symbol rates of 204Gbaud and 140Gbaud, over 10km and 80km, respectively, powered by a high-speed InPbased 2:1 selector and travelling-wave electro-absorption laser-modulator.

  • 27.
    Mardoyan, Haik
    et al.
    Nokia Bell Labs, 7 Route Villejust, F-91620 Nozay, France..
    Jorge, Filipe
    Thales Res & Technol, III V Lab, 1 Ave Augustin Fresnel, F-91676 Palaiseau, France.;CEA Leti, 1 Ave Augustin Fresnel, F-91676 Palaiseau, France..
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Estaran, Jose Manuel
    Nokia Bell Labs, 7 Route Villejust, F-91620 Nozay, France..
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Konczykowska, Agnieszka
    Thales Res & Technol, III V Lab, 1 Ave Augustin Fresnel, F-91676 Palaiseau, France.;CEA Leti, 1 Ave Augustin Fresnel, F-91676 Palaiseau, France..
    Riet, Muriel
    Thales Res & Technol, III V Lab, 1 Ave Augustin Fresnel, F-91676 Palaiseau, France.;CEA Leti, 1 Ave Augustin Fresnel, F-91676 Palaiseau, France..
    Duval, Bernadette
    Thales Res & Technol, III V Lab, 1 Ave Augustin Fresnel, F-91676 Palaiseau, France.;CEA Leti, 1 Ave Augustin Fresnel, F-91676 Palaiseau, France..
    Nodjiadjim, Virginie
    Thales Res & Technol, III V Lab, 1 Ave Augustin Fresnel, F-91676 Palaiseau, France.;CEA Leti, 1 Ave Augustin Fresnel, F-91676 Palaiseau, France..
    Dupuy, Jean-Yves
    Thales Res & Technol, III V Lab, 1 Ave Augustin Fresnel, F-91676 Palaiseau, France.;CEA Leti, 1 Ave Augustin Fresnel, F-91676 Palaiseau, France..
    Pang, Xiaodan
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden.;KTH Royal Inst Technol, Sch ICT, Kista, Sweden..
    Westergren, Urban
    KTH, School of Information and Communication Technology (ICT).
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT). KTH Royal Inst Technol, Sch ICT, Kista, Sweden..
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT).
    Bigo, Sebastien
    Nokia Bell Labs, 7 Route Villejust, F-91620 Nozay, France..
    204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications2018In: 2018 Optical Fiber Communications Conference and Exposition, OFC 2018 - Proceedings, Institute of Electrical and Electronics Engineers (IEEE), 2018Conference paper (Refereed)
    Abstract [en]

    We demonstrate an on-off keyed transmitter with direct detection, at record symbol rates of 204Gbaud and 140Gbaud, over 10km and 80km, respectively, powered by a high-speed InP-based 2: 1 selector and travelling-wave electro-absorption laser-modulator.

  • 28.
    Marinins, Aleksandrs
    et al.
    KTH, School of Engineering Sciences (SCI).
    Ozolins, O.
    Pang, X.
    Udalcovs, A.
    Navarro, J. R.
    Kakkar, Aditya
    KTH, School of Engineering Sciences (SCI).
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI).
    Jacobsen, G.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI).
    Thermal Reflow Engineered Cylindrical Polymer Waveguides for Optical Interconnects2018In: IEEE Photonics Technology Letters, ISSN 1041-1135, E-ISSN 1941-0174, Vol. 30, no 5, p. 447-450Article in journal (Refereed)
    Abstract [en]

    Integrated polymer photonics brings low cost and high fabrication flexibility to optoelectronic industry. However, this platform needs to overcome several issues to be effective enough for practical applications. In this letter, we experimentally demonstrate a decrease of propagation losses and polarization sensitivity of polymer waveguide-based devices as a result of thermal treatment. Heating of poly(methyl methacrylate) strip optical waveguides above the glass transition temperature initiates a waveguide surface reflow due to a decrease of the polymer viscosity and surface tension energy. This results in a decrease of surface roughness and shape change from rectangular to cylindrical. Thus, scattering losses and polarization sensitivity are minimized. 

  • 29.
    Marinins, Aleksandrs
    et al.
    KTH.
    Ozolins, Oskars
    Pang, Xiaodan
    RISE ACREO AB.
    Udalcovs, Aleksejs
    Navarro, Jaime Rodrigo
    Kakkar, Aditya
    KTH.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Jacobsen, Gunnar
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Cylindrical Polymer Optical Waveguides with Polarization Independent Performance2017In: CLEO: Science and Innovations, OSA Publishing , 2017Conference paper (Refereed)
    Abstract [en]

    Heating of poly(methyl methacrylate) ridge optical waveguides slightly above glass transition temperature minimizes surface roughness and provides cylindrical shape. We experimentally demonstrate propagation loss decrease and polarization insensitivity as a result of waveguide thermal treatment.

  • 30.
    Marinins, Aleksandrs
    et al.
    KTH, School of Engineering Sciences (SCI).
    Ozolins, Oskars
    Pang, Xiaodan
    Udalcovs, Aleksejs
    Navarro, Jaime Rodrigo
    Kakkar, Aditya
    KTH, School of Engineering Sciences (SCI).
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI).
    Jacobsen, Gunnar
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI).
    Thermal reflow engineered cylindrical polymer waveguides for optical interconnectsManuscript (preprint) (Other academic)
    Abstract [en]

    Integrated polymer photonics brings low cost and high fabrication flexibility to optoelectronic industry. However, this platform needs to overcome several issues to be efficient enough for practical applications. In this work, we experimentally demonstrate a decrease of propagation losses and polarization sensitivity of polymer waveguide-based devices as a result of thermal treatment. Heating of poly(methyl methacrylate) (PMMA) strip optical waveguides above the glass transition temperature initiates a waveguide surface reflow due to a decrease of a polymer viscosity and surface tension energy. This results in a decrease of surface roughness and shape change from rectangular to cylindrical; thus, scattering losses and polarization sensitivity are minimized.

  • 31. Navarro, J. R.
    et al.
    Udalcovs, A.
    Pang, Xiaodan
    KTH, School of Information and Communication Technology (ICT).
    Ozolins, O.
    Kakkar, Aditya
    KTH, School of Engineering Sciences (SCI).
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI).
    Nordwall, F.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, G.
    High phase noise tolerant circular-64QAM with efficient phase recovery for coherent optical systems2017In: Optics InfoBase Conference Papers, OSA - The Optical Society , 2017Conference paper (Refereed)
    Abstract [en]

    We experimentally demonstrate the significant phase noise tolerance increase of 28Gbaud circular-64QAM constellations against its square-64QAM counterpart with a novel, low complexity and high-performance phase recovery scheme employing only 8 test phases.

  • 32. Ozolins, Oskars
    et al.
    Pang, Xiaodan
    Iglesias Olmedo, Miguel
    KTH, School of Information and Communication Technology (ICT).
    Kakkar, Aditya
    KTH, School of Information and Communication Technology (ICT).
    Udalcovs, Aleksejs
    Gaiarin, Simone
    KTH, School of Information and Communication Technology (ICT).
    Navarro, Jaime Rodrigo
    Engenhardt, Klaus M.
    Asyngier, Tadeusz
    Schatz, Richard
    KTH, School of Information and Communication Technology (ICT).
    Li, Jie
    Nordwall, Fredrik
    Westergren, Urban
    KTH, School of Information and Communication Technology (ICT).
    Zibar, Darko
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT).
    Jacobsen, Gunnar
    100 GHz Externally Modulated Laser for Optical Interconnects2017In: Journal of Lightwave Technology, ISSN 0733-8724, E-ISSN 1558-2213, Vol. 35, no 6, p. 1174-1179Article in journal (Refereed)
    Abstract [en]

    We report on a 116 Gb/s on-off keying (OOK), four pulse amplitude modulation (PAM) and 105-Gb/s 8-PAM optical transmitter using an InP-based integrated and packaged externally modulated laser for high-speed optical interconnects with up to 30 dB static extinction ratio and over 100-GHz 3-dB bandwidth with 2 dB ripple. In addition, we study the tradeoff between power penalty and equalizer length to foresee transmission distances with standard single mode fiber.

  • 33. Pang, X.
    et al.
    Jia, S.
    Ozolins, O.
    Yu, X.
    Hu, H.
    Marcon, Leonardo
    KTH, School of Information and Communication Technology (ICT).
    Guan, P.
    Da Ros, F.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Jacobsen, G.
    Galili, M.
    Morioka, T.
    Zibar, D.
    Oxenløwe, L. K.
    Single Channel 106 Gbit/s 16QAM Wireless Transmission in the 0.4 THz Band2017In: 2017 Optical Fiber Communications Conference and Exhibition, OFC 2017 - Proceedings, Institute of Electrical and Electronics Engineers Inc. , 2017Conference paper (Refereed)
    Abstract [en]

    We experimentally demonstrate a single channel 32-GBd 16QAM THz wireless link operating in the 0.4 THz band. Post-FEC net data rate of 106 Gbit/s is successfully achieved without any spatial/freauencv multiplexing.

  • 34. Pang, X.
    et al.
    Jia, S.
    Ozolins, O.
    Yu, X.
    Hu, H.
    Marcon, Leornardo
    KTH, School of Information and Communication Technology (ICT).
    Guan, P.
    Da Ros, F.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Jacobsen, G.
    Galili, M.
    Morioka, T.
    Zibar, D.
    Oxenlowe, L. K.
    260 Gbit/s Photonic-Wireless Link in the THz Band2016In: 2016 IEEE PHOTONICS CONFERENCE (IPC), IEEE , 2016Conference paper (Refereed)
    Abstract [en]

    A single-transmitter/single-receiver THz link (0.3-0.5 THz) with a record net data rate of 260 Gbit/s is experimentally demonstrated. Spectrally efficient multi-channel signal transmission is enabled by a novel frequency-band-allocation scheme with pre-and-post-digital equalization.

  • 35. Pang, Xiaodan
    et al.
    Jia, Shi
    Ozolins, Oskars
    Yu, Xianbin
    Hu, Hao
    Marcon, Leonardo
    KTH, School of Information and Communication Technology (ICT).
    Guam, Pengyu
    Da Ros, Francesco
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Jacobsen, Gunnar
    Galili, Michael
    Morioka, Toshio
    Zibar, Darko
    Oxenlowe, Leif Katsuo
    Single Channel 106 Gbit/s 16QAM Wireless Transmission in the 0.4 THz Band2017In: 2017 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), IEEE , 2017Conference paper (Refereed)
    Abstract [en]

    We experimentally demonstrate a single channel 32-GBd 16QAM THz wireless link operating in the 0.4 THz band. Post-FEC net data rate of 106 Gbit/s is successfully achieved without any spatial/frequency multiplexing.

  • 36. Pang, Xiaodan
    et al.
    Ozolins, O.
    Gaiarin, S.
    Iglesias Olmedo, Miguel
    KTH, School of Information and Communication Technology (ICT).
    Schatz, Richard
    KTH, School of Information and Communication Technology (ICT).
    Westergren, Urban
    KTH, School of Information and Communication Technology (ICT).
    Zibar, D.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT).
    Jacobsen, G.
    Evaluation of high-speed EML-based IM/DD links with PAM modulations and low-complexity equalization2016In: European Conference on Optical Communication, ECOC, Institute of Electrical and Electronics Engineers Inc. , 2016, p. 872-874Conference paper (Refereed)
    Abstract [en]

    We experimentally evaluated up to 96 Gb/s/λ PAM IM/DD transmissions with an EML and digital equalizations. Symbol-spaced FFE/DFEs with fewer than 10 taps are shown being sufficient for a high and stable performance over a 4 km SMF link. .

  • 37.
    Pang, Xiaodan
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Ozolins, Oscar
    Gaiarin, S.
    Kakkar, Aditya
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Rodrigo Navarro, J.
    Iglesias Olmedo, M.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics. KTH, School of Information and Communication Technology (ICT), Centres, Kista Photonics Research Center, KPRC.
    Udalcovs, A.
    Westergren, U.
    Zibar, D.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Jacobsen, Gunnar
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Experimental Study of 1.55-μ m EML-Based Optical IM/DD PAM-4/8 Short Reach Systems2017In: IEEE Photonics Technology Letters, ISSN 1041-1135, E-ISSN 1941-0174, Vol. 29, no 6, p. 523-526, article id 7839925Article in journal (Refereed)
    Abstract [en]

    We experimentally evaluate high-speed intensity modulation/direct detection (IM/DD) transmissions with a 1.55-μ text broadband electro-Absorption modulated laser and pulse amplitude modulations (PAM). We demonstrate 80 Gb/s/ λ PAM-4 and 96 Gb/s/ λ PAM-8 transmissions with low-complexity digital equalizers at the receiver. Performance comparison with different types of equalizers are performed, including linear symbol-spaced feed-forward equalizer (FFE), fractional (half-symbol) spaced FFE and decision feedback equalizer (DFE), with different tap number. It is found that for both cases, a 6-Tap symbol-spaced FFE is sufficient to achieve a stable performance with bit-error-rate below the 7% overhead hard decision forward error correction (7%-OH HD-FEC) threshold over a 4 km standard single mode fiber link. Practical considerations including comparison between adaptive and static equalizer implementation and tolerable fiber chromatic dispersion are discussed.

  • 38.
    Pang, Xiaodan
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Ozolins, Oskars
    El-Taher, Atalla
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Jacobsen, Gunnar
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Sergeyev, Sergey
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Experimental Evaluation of Impairments in Unrepeatered DP-16QAM Link with Distributed Raman Amplification2017In: PHOTONICS, ISSN 2304-6732, Vol. 4, no 1, article id 16Article in journal (Refereed)
    Abstract [en]

    The transmission impairments of a Raman amplified link using dual-polarization 16-quadrature amplitude modulation (DP-16QAM) are experimentally characterized. The impact of amplitude and phase noise on the signal due to relative intensity noise (RIN) transfer from the pump are compared for two pumping configurations: first-order backward pumping and bi-directional pumping. Experimental results indicate that with increased Raman backward pump power, though the optical signal-to-noise ratio (OSNR) is increased, so is the pump-induced amplitude and phase noise. The transmission performance is firstly improved by the enhanced OSNR at a low pump power until an optimum point is reached, and then the impairments due to pump-induced noise start to dominate. However, the introduction of a low pump power in the forward direction can further improve the system's performance.

  • 39.
    Pang, Xiaodan
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Rodrigo Navarro, Jaime
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Kakkar, Aditya
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Olmedo, Miguel Iglesias
    Ozolins, Oskars
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Schatz, Richard
    KTH, School of Information and Communication Technology (ICT), Centres, Kista Photonics Research Center, KPRC. KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Udalcovs, Aleksejs
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Jacobsen, Gunnar
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Advanced Modulations and DSP Enabling High-speed Coherent Communication Using Large Linewidth Lasers2016In: 2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), IEEE , 2016, p. 4849-4849Conference paper (Refereed)
  • 40.
    Pang, Xiaodan
    et al.
    KTH. RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Van Kerrebrouck, Joris
    Univ Ghent, Imec, INTEC, IDLab, Ghent, Belgium..
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Lin, Rui
    KTH. Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Zhang, Lu
    KTH.
    Spiga, Silvia
    Tech Univ Munich, Walter Schottky Inst, Garching, Germany..
    Amann, Markus C.
    Tech Univ Munich, Walter Schottky Inst, Garching, Germany..
    Van Steenberge, Geert
    Univ Ghent, Imec, CMST, Ghent, Belgium..
    Gan, Lin
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Tang, Ming
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Fu, Songnian
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Schatz, Richard
    KTH.
    Jacobsen, Gunnar
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Popov, Sergei
    KTH. KTH Royal Inst Technol, Kista, Sweden..
    Liu, Deming
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Tong, Weijun
    Yangtze Opt Fiber & Cable Joint Stock Ltd Co, Wuhan, Hubei, Peoples R China..
    Torfs, Guy
    Univ Ghent, Imec, INTEC, IDLab, Ghent, Belgium..
    Bauwelinck, Johan
    Univ Ghent, Imec, INTEC, IDLab, Ghent, Belgium..
    Yin, Xin
    Univ Ghent, Imec, INTEC, IDLab, Ghent, Belgium..
    Chen, Jiajia
    KTH.
    7x100 Gbps PAM-4 Transmission over 1-km and 10-km Single Mode 7-core Fiber using 1.5-mu m SM-VCSEL2018In: 2018 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), Institute of Electrical and Electronics Engineers (IEEE), 2018Conference paper (Refereed)
    Abstract [en]

    100 Gbps/lambda/core PAM-4 transmission is successfully demonstrated over 1-km and 10km single mode 7-core fiber links, enabled by directly modulated 1.5-mu m single mode VCSEL of 23 GHz modulation bandwidth with pre-and post-digital equalizations.

  • 41.
    Popov, Sergei
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Kakkar, Aditya
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Navarro, J. R.
    Pang, Xiaodan
    Ozolins, O.
    Schatz, Richard
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Louchet, H.
    Jacobsen, G.
    Equalization-Enhanced Phase Noise in Coherent Optical Communications Systems2016In: 2016 18TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), IEEE, 2016Conference paper (Refereed)
    Abstract
  • 42.
    Rodrigo Navarro, Jaime
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Kakkar, Aditya
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Pang, Xiaodan
    Ozolins, Oskars
    Udalcovs, Aleksejs
    Schatz, Richard
    KTH, Superseded Departments, Microelectronics and Information Technology, IMIT.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Jacobsen, Gunnar
    Design of Multi-Stage Carrier Phase Recovery Schemes for  high  order  Coherent  Optical  mQAM  SystemsArticle in journal (Refereed)
  • 43.
    Rodrigo Navarro, Jaime
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO. Acreo Swedish ICI'AB, Sweden.
    Kakkar, Aditya
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO. Acreo Swedish ICI'AB, Sweden.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Pang, X.
    Ozolins, O.
    Nordwall, F.
    Louchet, H.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Jacobsen, G.
    High performance and low complexity carrier phase recovery schemes for 64-QAM coherent optical systems2017In: 2017 Optical Fiber Communications Conference and Exhibition, OFC 2017 - Proceedings, Institute of Electrical and Electronics Engineers Inc. , 2017Conference paper (Refereed)
    Abstract [en]

    We experimentally validate two novel CPR schemes outperforming existing CPRs in complexity and performance. A complexity reduction of at least a factor of 4 is reported compared to the BPS algorithm for a 64QAM system.

  • 44.
    Rodrigo Navarro, Jaime
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Kakkar, Aditya
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Pang, Xiaodan
    Acreo Swedish, Sweden.
    Ozolins, Oskars
    Acreo Swedish, Sweden.
    Fredrik, Nordwall
    Louchet, Hadrien
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Jacobsen, Gunnnar
    High Performance and Low Complexity Carrier Phase Recovery Schemes for 64-QAM Coherent Optical Systems2017In: Optics InfoBase Conference Papers, Optical Society of America, 2017Conference paper (Refereed)
    Abstract [en]

    We experimentally validate two novel CPR schemes outperforming existing CPRs in complexity and performance. A complexity reduction of at least a factor of 4 is reported compared to the BPS algorithm for a 64QAM system.

  • 45.
    Rodrigo Navarro, Jaime
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Kakkar, Aditya
    KTH, School of Engineering Sciences (SCI), Applied Physics, Optics and Photonics, OFO.
    Schatz, Richard
    KTH, School of Engineering Sciences (SCI).
    Pang, Xiaodan
    RISE ACREO AB.
    Ozolins, Oskars
    Udalcovs, Aleksejs
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Jacobsen, Gunnnar
    Blind  phase  search  with  angular  quantization  noise mitigation for efficient carrier phase recovery2017In: Photonics, ISSN 2304-6732, Vol. 4, no 2, article id 37Article in journal (Refereed)
    Abstract [en]

    The inherent discrete phase search nature of the conventional blind phase search (C-BPS) algorithm is found to introduce angular quantization noise in its phase noise estimator. The angular quantization noise found in the C-BPS is shown to limit its achievable performance and its potential low complexity implementation. A novel filtered BPS algorithm (F-BPS) is proposed and demonstrated to mitigate this quantization noise by performing a low pass filter operation on the C-BPS phase noise estimator. The improved performance of the proposed F-BPS algorithm makes it possible to significantly reduce the number of necessary test phases to achieve the C-BPS performance, thereby allowing for a drastic reduction of its practical implementation complexity. The proposed F-BPS scheme performance is evaluated on a 28-Gbaud 16QAM and 64QAM both in simulations and experimentally. Results confirm a substantial improvement of the performance along with a significant reduction of its potential implementation complexity compared to that of the C-BPS.

  • 46. Rosa, P.
    et al.
    Rizzelli, G.
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Ozolins, O.
    Udalcovs, A.
    Tan, M.
    Sergeyev, S.
    Schatz, Richard
    KTH, Superseded Departments (pre-2005), Electronics. KTH, Superseded Departments (pre-2005), Microelectronics and Information Technology, IMIT.
    Jacobsen, G.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Ania-Castaño´n, J. D.
    Unrepeatered 64QAM over SMF-28 using Raman amplification and digital backpropagation2017In: Optics InfoBase Conference Papers, OSA - The Optical Society , 2017Conference paper (Refereed)
    Abstract [en]

    Unrepeatered transmission over SMF-28 fibre is investigated using Raman based amplification. Experiments and simulations demonstrate a transmission up to 200 km (41 dB) span length using 28Gbaud 64 QAM modulation employing digital back propagation in DSP.

  • 47. Udalcovs, Aleksejs
    et al.
    Schatz, Richard
    KTH, Superseded Departments (pre-2005), Microelectronics and Information Technology, IMIT.
    Monti, Paolo
    Ozolins, Oskars
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Navarro, Julien R. G.
    KTH, School of Engineering Sciences (SCI).
    Kakkar, Aditya
    KTH, School of Engineering Sciences (SCI).
    Louchet, H.
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Wosinska, Lena
    KTH, Superseded Departments (pre-2005), Microelectronics and Information Technology, IMIT.
    Jacobsen, Gunnar
    Quantifying spectral and energy efficiency limitations of WDM networks due to crosstalk in optical nodes2017In: Optics InfoBase Conference Papers, OSA - The Optical Society , 2017Conference paper (Refereed)
    Abstract [en]

    We demonstrate the significant impact of crosstalk between add and drop ports at optical nodes on energy-efficiency per Hertz in WDM networks employing 32/64 Gbd DP-16QAM transmission, especially when the isolation is reduced to 30dB.

  • 48.
    Van Kerrebrouck, J.
    et al.
    Univ Ghent, Imec, INTEC, IDLab, Ghent, Belgium..
    Zhang, Lijia
    KTH. KTH Royal Inst Technol, Kista, Sweden.;Shanghai Jiao Tong Univ, SE IEE, Shanghai, Peoples R China..
    Lin, Rui
    KTH.
    Pang, Xiaodan
    KTH. RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Udalcovs, A.
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Ozolins, O.
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Spiga, S.
    Walter Schottky Inst, Coulombwall 4, Garching, Germany..
    Amann, M. C.
    Walter Schottky Inst, Coulombwall 4, Garching, Germany..
    Van Steenberge, G.
    Univ Ghent, Imec, INTEC, CMST, Ghent, Belgium..
    Gan, L.
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Tang, M.
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Fu, S.
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Schatz, Richard
    KTH.
    Popov, Sergei
    KTH.
    Liu, D.
    Huazhong Univ Sci & Technol, Wuhan, Hubei, Peoples R China..
    Tong, W.
    Yangtze Opt Fiber & Cable Joint Stock Ltd Co, Wuhan, Hubei, Peoples R China..
    Xiao, S.
    Shanghai Jiao Tong Univ, SE IEE, Shanghai, Peoples R China..
    Torfs, G.
    Univ Ghent, Imec, INTEC, IDLab, Ghent, Belgium..
    Chen, Jiajia
    KTH.
    Bauwelinck, J.
    Univ Ghent, Imec, INTEC, IDLab, Ghent, Belgium..
    Yin, X.
    Univ Ghent, Imec, INTEC, IDLab, Ghent, Belgium..
    726.7-Gb/s 1.5-mu m Single-Mode VCSEL Discrete Multi-Tone Transmission over 2.5-km Multicore Fiber2018In: 2018 Optical Fiber Communications Conference and Exposition, OFC 2018 - Proceedings, Institute of Electrical and Electronics Engineers (IEEE), 2018Conference paper (Refereed)
    Abstract [en]

    A 107Gb/s net-rate DMT optical signal was generated using a single-mode long-wavelength VCSEL with a modulation bandwidth of 23GHz. We experimentally demonstrated a total net-rate up to 726.7Gb/s at 1.5 mu m over 2.5km 7-core dispersion-uncompensated MCF.

  • 49. Van Kerrebrouck, J.
    et al.
    Zhang, Lu
    KTH, School of Information and Communication Technology (ICT). Shanghai Jiao Tong University, Shanghai, China.
    Lin, Rui
    KTH, School of Information and Communication Technology (ICT). uazhong University of Science and Technology, Wuhan, China.
    Pang, Xiaodan
    Networking and Transmission Laboratory, RISE Acreo AB, Kista, Sweden.
    Udalcovs, A.
    Ozolins, O.
    Spiga, S.
    Amann, M. C.
    Van Steenberge, G.
    Gan, L.
    Tang, M.
    Fu, S.
    Schatz, Richard
    KTH, School of Information and Communication Technology (ICT).
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT).
    Liu, D.
    Tong, W.
    Xiao, S.
    Torfs, G.
    Chen, Jia
    KTH, School of Information and Communication Technology (ICT).
    Bauwelinck, J.
    Yin, X.
    726.7-Gb/s 1.5-μm single-mode VCSEL discrete multi-tone transmission over 2.5-km multicore fiber2018In: Optics InfoBase Conference Papers, Optics Info Base, Optical Society of America, 2018Conference paper (Refereed)
    Abstract [en]

    A 107Gb/s net-rate DMT optical signal was generated using a single-mode longwavelength VCSEL with a modulation bandwidth of 23GHz. We experimentally demonstrated a total net-rate up to 726.7Gb/s at 1.5μm over 2.5km 7-core dispersion-uncompensated MCF.

  • 50.
    Vasileva, Elena
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Li, Yuanyuan
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Sychugov, Ilya
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Mensi, Mounir
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Lasing from Organic Dye Molecules Embedded in Transparent Wood2017In: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071, Vol. 5, no 10, article id 1700057Article in journal (Refereed)
    Abstract [en]

    The report on a study of laser emission from a conceptually new organic material based on transparent wood (TW) with embedded dye Rhodamine 6G molecules is presented in this paper. The lasing performance is compared to a reference organic material containing dye in a poly-methyl-methacrylate matrix. From experimental results, one can conclude that the optical feedback in dye-TW material is realized within cellulose fibers, which play the role of tiny optical resonators. Therefore, the output emission is a collective contribution of individual resonators. Due to this fact, as well as low Q-factor of the resonators/fibers and their length variation, the spectral line of laser emission is broadened up to several nanometers.

12 1 - 50 of 61
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf