Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Borrajo-Pelaez, Rafael
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Hedström, Peter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Recent Developments of Crystallographic Analysis Methods in the Scanning Electron Microscope for Applications in Metallurgy2018In: Critical reviews in solid state and materials sciences, ISSN 1040-8436, E-ISSN 1547-6561, Vol. 43, no 6, p. 455-474Article, review/survey (Refereed)
    Abstract [en]

    The field of metallurgy has greatly benefited from the development of electron microscopy over the last two decades. Scanning electron microscopy (SEM) has become a powerful tool for the investigation of nano- and microstructures. This article reviews the complete set of tools for crystallographic analysis in the SEM, i.e., electron backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD), and electron channeling contrast imaging (ECCI). We describe recent relevant developments in electron microscopy, and discuss the state-of-the-art of the techniques and their use for analyses in metallurgy. EBSD orientation measurements provide better angular resolution than spot diffraction in TEM but slightly lower than Kikuchi diffraction in TEM, however, its statistical significance is superior to TEM techniques. Although spatial resolution is slightly lower than in TEM/STEM techniques, EBSD is often a preferred tool for quantitative phase characterization in bulk metals. Moreover, EBSD enables the measurement of lattice strain/rotation at the sub-micron scale, and dislocation density. TKD enables the transmitted electron diffraction analysis of thin-foil specimens. The small interaction volume between the sample and the electron beam enhances considerably the spatial resolution as compared to EBSD, allowing the characterization of ultra-fine-grained metals in the SEM. ECCI is a useful technique to image near-surface lattice defects without the necessity to expose two free surfaces as in TEM. Its relevant contributions to metallography include deformation characterization of metals, including defect visualization, and dislocation density measurements. EBSD and ECCI are mature techniques, still undergoing a continuous expansion in research and industry. Upcoming technical developments in electron sources and optics, as well as detector instrumentation and software, will likely push the border of performance in terms of spatial resolution and acquisition speed. The potential of TKD, combined with EDS, to provide crystallographic, chemical, and morphologic characterizations of nano-structured metals will surely be a valuable asset in metallurgy.

  • 2.
    Ma, Taoran
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Borrajo-Pelaez, Rafael
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Hedström, Peter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Borgh, Ida
    Blomqvist, Andreas
    Norgren, Susanne
    Odqvist, Joakim
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Microstructure evolution during phase separation in Ti-Zr-C2016In: International Journal of Refractory Metals and Hard Materials, ISSN 0263-4368, Vol. 61, p. 238-248Article in journal (Refereed)
    Abstract [en]

    (Ti,Zr)C powder was synthesized by carbothermal reduction and subsequently aged at 1150–2000 °C. The phase composition and microstructure was investigated using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and electron backscatter diffraction. It was found that the as-synthesized (Ti,Zr)C particles have a concentration gradient with a higher concentration of Ti at the surface of the particles. Furthermore, during aging the (Ti,Zr)C decomposes into Ti-rich and Zr-rich lamellae. During aging at 1400 and 1800 °C for 10 h, most Zr-rich and Ti-rich domains precipitate at grain boundaries, inheriting the crystal orientation of the parent grain behind the growth front. When the precipitate grows into another (Ti,Zr)C grain, that grain adopts the same crystal orientation as the parent grain. The crystallographic misorientation between adjacent lamellae is 0–5°. Based on these microstructural observations it is hypothesized that the mechanism of decomposition is discontinuous precipitation.

  • 3.
    Nosko, Oleksii
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.).
    Borrajo-Pelaez, Rafael
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Hedström, Peter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Porosity and shape of airborne wear microparticles generated by sliding contact between a low-metallic friction material and a cast iron2017In: Journal of Aerosol Science, ISSN 0021-8502, E-ISSN 1879-1964, Vol. 113, p. 130-140Article in journal (Refereed)
    Abstract [en]

    The wear of brakes in transport vehicles is one of the main anthropogenic sources of airborne particulate matter in urban environments. The present study deals with the characterisation of airborne wear microparticles from a low-metallic friction material / cast iron pair used in car brakes. Particles were generated by a pin-on-disc machine in a sealed chamber at sliding velocity of 1.3 m/s and contact pressure of 1.5 MPa. They were collected on filters in an electrical low pressure impactor, and an investigation was conducted to quantify their shape and porosity. Scanning electron microscopy revealed that most of the 0.1−0.9 µm particles are flakes and have a breadth-to-length aspect ratio of 0.7 ± 0.2. Particle porosity was determined by milling particles with a focused ion beam and subsequent analysis of the exposed particle cross-sections. Most of the 0.3–6.2 µm particles were revealed to have porosity of 9 ± 6%. Analysis of the relationship between effective particle density, particle material density, dynamic shape factor and porosity showed that the shape factor has a stronger influence on the effective density of airborne wear particles than the porosity factor. The obtained results are useful for accurate prediction of particle behaviour in the atmosphere and in the human respiratory system.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf