Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Heinig, Stefanie
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems.
    Jacobs, Keijo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems.
    Ilves, Kalle
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems.
    Bessegato, Luca
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems.
    Bakas, Panagiotis
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems.
    Norrga, Staffan
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems.
    Implications of Capacitor Voltage Imbalance on the Operation of the Semi-Full-Bridge Submodule2019In: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107, Vol. 34, no 10, p. 9520-9535, article id 8598807Article in journal (Refereed)
    Abstract [en]

    Future meshed high-voltage direct current grids require modular multilevel converters with extended functionality. One of the most interesting new submodule topologies is the semi-full-bridge because it enables efficient handling of DC-side short circuits while having reduced power losses compared to an implementation with full-bridge submodules. However, the semi-full-bridge submodule requires the parallel connection of capacitors during normal operation which can cause a high redistribution current in case the voltages of the two submodule capacitors are not equal. The maximum voltage difference and resulting redistribution current have been studied analytically, by means of simulations and in a full-scale standalone submodule laboratory setup. The most critical parameter is the capacitance mismatch between the two capacitors. The experimental results from the full-scale prototype show that the redistribution current peaks at 500A if the voltage difference is 10V before paralleling and increases to 2500A if the difference is 40V. However, neglecting very unlikely cases, the maximum voltage difference predicted by simulations is not higher than 20-30V for the considered case. Among other measures, a balancing controller is proposed which reduces the voltage difference safely if a certain maximum value is surpassed. The operating principle of the controller is described in detail and verified experimentally on a down-scaled submodule within a modular multilevel converter prototype. It can be concluded that excessively high redistribution currents can be prevented. Consequently, they are no obstacle for using the semi-full-bridge submodule in future HVDC converters.

  • 2.
    Heinig, Stefanie
    et al.
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Jacobs, Keijo
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Ilves, Kalle
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems. ABB Corporate Research.
    Norrga, Staffan
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Implications of Capacitor Voltage Imbalance on the Operation of the Semi-Full-Bridge Submodule2017In: 2017 19th European Conference on Power Electronics andApplications (EPE'17 ECCE Europe), Warsaw, Poland, 2017Conference paper (Refereed)
    Abstract [en]

    An investigation of the voltage imbalance of the two capacitors of the semi-full-bridge submodule is performed. Since the capacitances are not exactly the same, there may be a difference between the capacitor voltages. The resulting current-spike when they are connected in parallel has been analyzed in a full-scale laboratory experiment.

  • 3.
    Heinig, Stefanie
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems.
    Jacobs, Keijo
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems.
    Ilves, Kalle
    ABB Corp Res, Forskargrand 7, SE-72178 Vasteras, Sweden..
    Norrga, Staffan
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering and Computer Science (EECS), Electric Power and Energy Systems.
    Reduction of Switching Frequency for the Semi-Full-Bridge Submodule Using Alternative Bypass States2018In: 2018 20TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE'18 ECCE EUROPE), IEEE , 2018Conference paper (Refereed)
    Abstract [en]

    As regards modular multilevel converter submodules, a different number of switches may be involved in the transitions between voltage levels depending on the submodule type and choice of switching states. In this paper, an investigation of the average switching frequency associated with different choices of bypass states is performed for the semi-full-bridge submodule. Theoretical considerations and simulation results show that the average switching frequency per device can be halved by using the proposed alternative bypass state. Moreover, the switching losses can be reduced by up to 60%. Finally, a comparative study with the full-bridge submodule has been conducted.

  • 4.
    Jacobs, Keijo
    et al.
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Johannesson, Daniel
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Norrga, Staffan
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    MMC Converter Cells Employing Ultrahigh-Voltage SiC Bipolar Power Semiconductors2017In: 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE EUROPE), Institute of Electrical and Electronics Engineers (IEEE), 2017Conference paper (Refereed)
    Abstract [en]

    This paper investigates the benefits of using high-voltage converter cells for transmission applications. These cells employ ultrahigh-voltage SiC bipolar power semiconductors, which are optimized for low conduction losses. The Modular Multilevel Converter with half-bridge cells is used as a test case. The results indicate a reduction of converter volume and complexity, while maintaining low losses and harmonic performance.

  • 5.
    Jacobs, Keijo
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS). KTH University.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Norrga, Staffan
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Dissipation Loop for Shoot-Through Faults in HVDC Converter Cells2018In: 2018 INTERNATIONAL POWER ELECTRONICS CONFERENCE (IPEC-NIIGATA 2018 -ECCE ASIA), Institute of Electrical and Electronics Engineers (IEEE), 2018, p. 3292-3298Conference paper (Refereed)
    Abstract [en]

    Converter cells for HVDC applications store large amounts of energy. This energy might be dissipated in a very short time in case of a shoot-through fault. Measures to avoid shoot-through or handle the extreme currents during a fault and prevent damage from neighboring components are essential to ensure a continued operation of the converter. With future high-voltage silicon carbide semiconductors, cell voltages can be increased leading to higher stored energy per cell. In cells with thyristor-based semiconductors, e.g. IGCTs, a di/dt reactor may have to be employed. This paper presents a method to handle the dissipated energy during shoot-through which makes use of the inherently needed di/dt reactor. The majority of the stored energy in the cell can be dissipated in a dedicated discharge loop formed by the reactor and an antiparallel bypass thyristor. After diverting the fault current into the dissipation loop, there is no current through any other component of the cell.

  • 6.
    Jacobs, Keijo
    et al.
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Saad, Hani
    RTE, Paris La Défense, France .
    Dennetière, Sebastien
    RTE, Paris La Défense, France .
    Modelling of semiconductor losses of the Modular Multilevel Converter in EMTP2016In: 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics, COMPEL 2016, Institute of Electrical and Electronics Engineers (IEEE), 2016Conference paper (Refereed)
    Abstract [en]

    The development of controllable semiconductor switches and Voltage Source Converter (VSC) technologies is rapidly expanding the fields of applications of HVDC and FACTS in power systems. Recent developments in converter technology are focused on Modular Multilevel Converters (MMC). This article deals with loss modeling and its implementation in EMT-type software for three different types of MMC models. The 401-Level HVDC-MMC based on the INELFE project is used as a test case. The implementation is integrated into the EMTP software, so that no additional tools or software is needed.

  • 7.
    Johannesson, Daniel
    et al.
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems. ABB Corporate Research, Västerås, Sweden.
    Nawaz, Muhammad
    ABB Corporate Research, Västerås, Sweden.
    Jacobs, Keijo
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Norrga, Staffan
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Potential of Ultra-High Voltage Silicon Carbide Semiconductor Devices2016In: 2016 IEEE 4TH WORKSHOP ON WIDE BANDGAP POWER DEVICES AND APPLICATIONS (WIPDA), IEEE conference proceedings, 2016, p. 253-258Conference paper (Refereed)
    Abstract [en]

    In this paper, the theoretical performance of ultra-high voltage Silicon Carbide (SiC) based devices are investigated. The SiC semiconductor device conduction power loss and switching power loss are predicted and compared with different modeling approaches, for SiC metal-oxide semiconductor field-effect transistors (MOSFETs) up to 20 kV and SiC gate turn-off (GTO) thyristors and SiC insulated-gate bipolar transistors (IGBTs) up to 50 kV. A parameter sensitivity analysis has been performed to observe the device power loss under various operating conditions, for instance current density, temperature and charge carrier lifetime. Also, the maximum allowed current density and maximum switching frequency for a maximum chip power dissipation limit of 300 W/cm(2) are investigated. The simulation results indicate that the SiC MOSFET has the highest current capability up to approximately 15 kV, while the SiC IGBT is suitable in the range of 15 kV to 35 kV, and thereafter the SiC GTO thyristor supersedes the loss performance from 35 kV to 50 kV.

  • 8.
    Sadik, Diane-Perle
    et al.
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Heinig, Stefanie
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Jacobs, Keijo
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Johannesson, Daniel
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems. ABB Corp Res, Sweden.
    Lim, Jan-Kwon
    Nawaz, Muhammad
    Dijkhuizen, Frans
    Bakowski, Mietek
    Norrga, Staffan
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Nee, Hans-Peter
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Investigation of the Surge Current Capability of the Body Diode of SiC MOSFETs for HVDC Applications2016In: 2016 18TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE'16 ECCE EUROPE), IEEE, 2016Conference paper (Refereed)
    Abstract [en]

    The surge current capability of the body-diode of SiC MOSFETs is experimentally analyzed in order to investigate the possibility of using SiC MOSFETs for HVDC applications. SiC MOSFET discrete devices and modules have been tested with surge currents up to 10 times the rated current and for durations up to 2 ms. Although the presence of stacking faults cannot be excluded, the experiments reveal that the failure may occur due to the latch-up of the parasitic n-p-n transistor located in the SiC MOSFET.

  • 9.
    Salemi, Arash
    et al.
    KTH, School of Information and Communication Technology (ICT).
    Elahipanah, Hossein
    KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits.
    Jacobs, Keijo
    KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
    Zetterling, Carl-Mikael
    KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits.
    Östling, Mikael
    KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits.
    15 kV-Class Implantation-Free 4H-SiC BJTs With Record High Current Gain2018In: IEEE Electron Device Letters, ISSN 0741-3106, E-ISSN 1558-0563, Vol. 39, no 1, p. 63-66Article in journal (Refereed)
    Abstract [en]

    Implantation-free mesa-etched ultra-high-voltage (0.08 mm(2)) 4H-SiC bipolar junction transistors (BJTs) with record current gain of 139 are fabricated, measured, and analyzed by device simulation. High current gain is achieved by optimized surface passivation and optimal cell geometries. The area-optimized junction termination extension is utilized to obtain a high and stable breakdown voltage without ion implantation. The open-base blocking voltage of 15.8 kV at a leakage current density of 0.1 mA/cm(2) is achieved. Different cell geometries (single finger, square, and hexagon cell geometries) are also compared.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf