Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Kaldéus, Tahani
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Träger, Andrea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Berglund, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Lo Re, Giada
    Chalmers University of Technology.
    Molecular engineering of cellulose-PCL bio-nanocomposite interface by reactive amphiphilic copolymer nanoparticles2019In: Article in journal (Refereed)
  • 2.
    Kaldéus, Tahani
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Träger, Andrea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Lo Re, Giada
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Molecular Engineering of the Cellulose-Poly(Caprolactone) Bio-Nanocomposite Interface by Reactive Amphiphilic Copolymer Nanoparticles2019In: ACS NANO, Vol. 13, no 6, p. 6409-6420Article in journal (Refereed)
    Abstract [en]

    A molecularly engineered water-borne reactive compatibilizer is designed for tuning of the interface in melt-processed thermoplastic poly(caprolactone) (PCL)-cellulose nanocomposites. The mechanical properties of the nanocomposites are studied by tensile testing and dynamic mechanical analysis. The reactive compatibilizer is a statistical copolymer of 2-(dimethylamino)ethyl methacrylate and 2-hydroxy methacrylate, which is subsequently esterified and quaternized. Quaternized ammonium groups in the reactive compatibilizer electrostatically match the negative surface charge of cellulose nanofibrils (CNFs). This results in core-shell CNFs with a thin uniform coating of the compatibilizer. This promotes the dispersion of CNFs in the PCL matrix, as concluded from high-resolution scanning electron microscopy and atomic force microscopy. Moreover, the compatibilizer "shell" has methacrylate functionalities, which allow for radical reactions during processing and links covalently with PCL. Compared to the bio-nanocomposite reference, the reactive compatibilizer (<4 wt %) increased Young's modulus by about 80% and work to fracture 10 times. Doubling the amount of peroxide caused further improved mechanical properties, in support of effects from higher cross-link density at the interface. Further studies of interfacial design in specific nanocellulose-based composite materials are warranted since the detrimental effects from CNFs agglomeration may have been underestimated.

  • 3.
    Pendergraph, Sam
    et al.
    Fibre & Polymer Technol, Arlington Hts, IL USA..
    Carrick, Christopher
    KTH.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Carlmark, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Johansson, Mats
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. Royal Inst Tech, Stockholm, Sweden..
    Klein, Gregor
    KTH.
    Träger, Andrea
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Macroscopic cellulose probes for contact adhesion2015In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 249Article in journal (Other academic)
  • 4.
    Träger, Andrea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Strategies for Molecular Engineering of Macroscopic Adhesion and Integrity Focusing on Cellulose Based Materials2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Many aspects of modern human life pose a strain on the delicate ecosystems around us. One example is marine litter – mainly various plastic items – which accumulate in the marine environment, where they cause problems for the fauna, such as ingestion and entanglement.The widely used plastics offer many advantages for packaging, such as low cost and easy processing into many shapes. However, in addition to their low biodegradability leading to their persistence and accumulation in nature, they are largely manufactured from petroleum,a non‐renewable resource. Clearly, it would be highly desirable to exchange the petroleum‐based materials for biodegradable ones from renewable resources. Cellulose, as the most abundant biopolymer, is one choice. There are however challenges in terms of replacing currently used plastics with cellulosic materials. One is the low ductility and formability of cellulose. Various efforts are undertaken to increase the formability of cellulose. One approach to increase the renewable fraction within a material is to utilise the intrinsic stiffness and strength of cellulose to increase the structural integrity of a composite. To fully optimise these types of materials, a fundamental understanding of the interaction across interfaces within the material is essential. The main objective in this thesis was to elucidate strategies to measure, to tune and to control the interaction across interfaces. Specific polymers were designed and synthesised which could be used to modify surfaces to achieve a wet adhesion as high as that of mussel foot protein. Many properties of the joint were tuneable by varying length and structure of the polymer and amount of polymer deposited on the surfaces. A method to accurately evaluate interfacial adhesion between a chemically modified cellulose material and another surface was successfully developed, using nanometre smooth cellulose probes exhibiting bulk material properties. Two composite materials containing cellulose as reinforcing element were successfully prepared,utilising different strategies to control and enhance the interaction between the composite constituents. Together, these findings contribute to the knowledge of how to evaluate and control the interaction across an interface.

    The full text will be freely available from 2020-04-01 10:16
  • 5.
    Träger, Andrea
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Carlmark, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Interpenetrated Networks of Nanocellulose and Polyacrylamide with Excellent Mechanical and Absorptive Properties2018In: Macromolecular materials and engineering (Print), ISSN 1438-7492, E-ISSN 1439-2054, Vol. 303, no 5, article id 1700594Article in journal (Refereed)
    Abstract [en]

    Composites based on interpenetrating networks (IPNs) of cellulose nanofibril (CNF) aerogels and polyacrylamide are prepared and exhibit robust mechanical, water retaining, and re-swelling capacities. Furthermore, their swelling behavior is not affected by an increased ionic strength of the aqueous phase. These unprecedented IPNs combine the water retaining capacity of the polyacrylamide with the mechanical strength provided by the CNF aerogel template. The CNF aerogel/polyacrylamide composites exhibit a compressive stress at break greater than 250% compared with a neat polyacrylamide hydrogel. Furthermore, the composites retain their wet compression properties after drying and re-swelling, whereas the neat polyacrylamide hydrogels fail at a significantly lower stress and strain after drying and re-swelling. These composite materials highlight the potential of CNF aerogels to strengthen the mechanical properties and reduce the number of fracture defects during the drying and re-swelling of a hydrogel. These composites show the potential of being optimized for a plethora of applications, especially in the hygiene field and for biomedical devices.

  • 6.
    Träger, Andrea
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Klein, Gregor
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Carrick, Christopher
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Pettersson, Torbjörn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Johansson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Pendergraph, Samuel A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Carlmark, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. RISE Research Institutes of SwedenStockholmSweden.
    Macroscopic cellulose probes for the measurement of polymer grafted surfaces2019In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 26, no 3, p. 1467-1477Article in journal (Refereed)
    Abstract [en]

    A synthesis protocol was identified to produce covalent grafting of poly(dimethyl siloxane) from cellulose, based on prior studies of analogous ring opening polymerizations. Following this polymer modification of cellulose, the contact adhesion was anticipated to be modified and varied as a function of the polymer molecular mass. The synthetic details were optimized for a filter paper surface before grafting the polymer from bulk cellulose spheres. The adhesion of the unmodified and grafted, bulk cellulose spheres were evaluated using the Johnson-Kendall-Roberts (JKR) theory with a custom build contact adhesion testing setup. We report the first example of grafting poly(dimethyl siloxane) directly from bulk cellulose using ring opening polymerization. For short grafting lengths, both the JKR work of adhesion and the adhesion energy at the critical energy release rate (G(c)) were comparable to unmodified cellulose beads. When polymer grafting lengths were extended sufficiently where chain entanglements occur, both the JKR work of adhesion and G(c) were increased by as much as 190%. Given the multitude of options available to graft polymers from cellulose, this study shows the potential to use this type of cellulose spheres to study the interaction between different polymer surfaces in a controlled manner. [GRAPHICS] .

  • 7.
    Träger, Andrea
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Pendergraph, Samuel A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Carlmark, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    New concepts for molecular engineering of macroscopic adhesion between cellulose surfaces2015In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 249Article in journal (Other academic)
  • 8.
    Träger, Andrea
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Pendergraph, Samuel A.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Pettersson, Torbjörn
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Halthur, Tobias
    Nylander, Tommy
    Carlmark, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Strong and tuneable wet adhesion with rationally designed layer-by-layer assembled triblock copolymer films2016In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 8, no 42, p. 18204-18211Article in journal (Refereed)
    Abstract [en]

    this study the wet adhesion between Layer-by-Layer (LbL) assembled films of triblock copolymer micelles was investigated. Through the LbL assembly of triblock copolymer micelles with hydrophobic, low glass transition temperature (T-g) middle blocks and ionic outer blocks, a network of energy dissipating polymer chains with electrostatic interactions serving as crosslinks can be built. Four triblock copolymers were synthesized through Atom Transfer Radical Polymerisation (ATRP). One pair had a poly(2-ethyl-hexyl methacrylate) middle block with cationic or anionic outer blocks. The other pair contained the same ionic outer blocks but poly(n-butyl methacrylate) as the middle block. The wet adhesion was evaluated with colloidal probe AFM. To our knowledge, wet adhesion of the magnitude measured in this study has not previously been measured on any polymer system with this technique. We are convinced that this type of block copolymer system grants the ability to control the geometry and adhesive strength in a number of nano-and macroscale applications.

  • 9.
    Träger, Andrea
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Reid, Michael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Pendergraph, Samuel A.
    Cobo Sanchez, Carmen
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wågberg, Lars
    KTH, Superseded Departments (pre-2005), Fibre and Polymer Technology.
    Enhanced toolbox to tailor theproperties of Layer‐by‐Layer assembled triblock copolymer filmsManuscript (preprint) (Other academic)
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf