Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Daniel, Quentin
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Anabre, Ram B.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Zhang, Biaobiao
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Philippe, Bertrand
    Chen, Hong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Li, Fusheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Fan, Ke
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Ahmadi, Sareh
    Rensmo, Hakan
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. Dalian University of Technology (DUT), China.
    Re-Investigation of Cobalt Porphyrin for Electrochemical Water Oxidation on FTO Surface: Formation of CoOx as Active Species2017In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 7, no 2, p. 1143-1149Article in journal (Refereed)
    Abstract [en]

    The use of cobalt porphyrin complexes as efficient and cost-effective molecular catalysts for water oxidation has been investigated previously. However, by combining a set of analytical techniques (electrochemistry, ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and synchrotron-based photoelectron spectroscopy (SOXPES and HAXPES)), we have demonstrated that three different cobalt porphyrins, deposited on FTO glasses, decompose promptly into a thin film of CoOx on the surface of the electrode during water oxidation under certain conditions (borate buffer pH 9.2). It is presumed that the film is composed of CoO, only detectable by SOXPES, as conventional techniques are ineffective. This newly formed film has a high turnover frequency (TOF), while the high transparency of the CoOx-based electrode is very promising for future application in photoelectrochemical cells.

  • 2.
    Daniel, Quentin
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Duan, Lele
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Timmer, Brian J. J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Chen, Hong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Luo, Xiaodan
    Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China..
    Ambre, Ram
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Wang, Ying
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Zhang, Biaobiao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Zhang, Peili
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Wang, Lei
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Li, Fusheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Sun, Junliang
    Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China..
    Ahlquist, Mårten S. G.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Water Oxidation Initiated by In Situ Dimerization of the Molecular Ru(pdc) Catalyst2018In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 8, no 5, p. 4375-4382Article in journal (Refereed)
    Abstract [en]

    The mononuclear ruthenium complex [Ru(pdc)L-3] (H(2)pdc = 2,6-pyridinedicarboxylic acid, L = N-heterocycles such as 4-picoline) has previously shown promising catalytic efficiency toward water oxidation, both in homogeneous solutions and anchored on electrode surfaces. However, the detailed water oxidation mechanism catalyzed by this type of complex has remained unclear. In order to deepen understanding of this type of catalyst, in the present study, [Ru(pdc)(py)(3)] (py = pyridine) has been synthesized, and the detailed catalytic mechanism has been studied by electrochemistry, UV-vis, NMR, MS, and X-ray crystallography. Interestingly, it was found that once having reached the Ru-IV state, this complex promptly formed a stable ruthenium dimer [Ru-III(pdc)(py)(2)-O-Ru-IV(pdc)(py)(2)](+). Further investigations suggested that the present dimer, after one pyridine ligand exchange with water to form [Ru-III(pdc)(py)(2)-O-Ru-IV(pdc)(py)(H2O)](+), was the true active species to catalyze water oxidation in homogeneous solutions.

  • 3.
    Fan, Ke
    et al.
    KTH, School of Chemical Science and Engineering (CHE).
    Ji, Yongfei
    Zou, Haiyuan
    Zhang, Jinfeng
    Zhu, Bicheng
    Chen, Hong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Daniel, Quentin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Luo, Yi
    Yu, Jiaguo
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Hollow Iron-Vanadium Composite Spheres: A Highly Efficient Iron-Based Water Oxidation Electrocatalyst without the Need for Nickel or Cobalt2017In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 56, no 12, p. 3289-3293Article in journal (Refereed)
    Abstract [en]

    Noble-metal-free bimetal-based electrocatalysts have shown high efficiency for water oxidation. Ni and/or Co in these electrocatalysts are essential to provide a conductive, high-surface area and a chemically stable host. However, the necessity of Ni or Co limits the scope of low-cost electrocatalysts. Herein, we report a hierarchical hollow FeV composite, which is Ni- and Co-free and highly efficient for electrocatalytic water oxidation with low overpotential 390 mV (10 mA cm(-2) catalytic current density), low Tafel slope of 36.7 mV dec(-1), and a considerable durability. This work provides a novel and efficient catalyst, and greatly expands the scope of low-cost Fe-based electrocatalysts for water splitting without need of Ni or Co.

  • 4. Fan, Ke
    et al.
    Zou, Haiyuan
    Lu, Yue
    Beijing Univ Technol, Inst Microstruct & Properties Adv Mat, Beijing 100124, Peoples R China..
    Chen, Hong
    Li, Fusheng
    Liu, Jinxuan
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Tong, Lianpeng
    Toney, Michael F.
    Sui, Manling
    Yu, Jiaguo
    Direct Observation of Structural Evolution of Metal Chalcogenide in Electrocatalytic Water Oxidation2018In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 12, no 12, p. 12369-12379Article in journal (Refereed)
    Abstract [en]

    As one of the most remarkable oxygen evolution reaction (OER) electrocatalysts, metal chalcogenides have been intensively reported during the past few decades because of their high OER activities. It has been reported that electron-chemical conversion of metal OER chalcogenides into oxides/hydroxides would take place after the OER. However, the transition mechanism of such unstable structures, as well as the real active sites and catalytic activity during the OER for these electrocatalysts, has not been understood yet; therefore a direct observation for the electrocatalytic water oxidation process, especially at nano or even angstrom scale, is urgently needed. In this research, by employing advanced Cs-corrected transmission electron microscopy (TEM), a step by step oxidational evolution of amorphous electrocatalyst CoSx into crystallized CoOOH in the OER has been in situ captured: irreversible conversion of CoSx to crystallized CoOOH is initiated on the surface of the electrocatalysts with a morphology change via Co(OH)(2) intermediate during the OER measurement, where CoOOH is confirmed as the real active species. Besides, this transition process has also been confirmed by multiple applications of X-ray photoelectron spectroscopy (XPS), in situ Fourier-transform infrared spectroscopy (FTIR), and other ex situ technologies. Moreover, on the basis of this discovery, a high-efficiency electrocatalyst of a nitrogen-doped graphene foam (NGF) coated by CoSx has been explored through a thorough structure transformation of CoOOH. We believe this in situ and in-depth observation of structural evolution in the OER measurement can provide insights into the fundamental understanding of the mechanism for the OER catalysts, thus enabling the more rational design of low-cost and high-efficient electrocatalysts for water splitting.

  • 5.
    Fan, Ting
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Duan, Lele
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Huang, Ping
    Chen, Hong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Daniel, Quentin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Ahlquist, Mårten S. G.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    The Ru-tpc Water Oxidation Catalyst and Beyond: Water Nucleophilic Attack Pathway versus Radical Coupling Pathway.2017In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 7, no 4, p. 2956-2966Article in journal (Refereed)
    Abstract [en]

    Many Ru water oxidation catalysts have been documented in the literature. However, only a few can catalyze the O-O bond formation via the radical coupling pathway, while most go through the water nucleophilic attack pathway. Understanding the electronic effect on the reaction pathway is of importance in design of active water oxidation catalysts. The Ru-bda (bda = 2,2'-bipyridine-6,6'-dicarboxylate) catalyst is one example that catalyzes the 0-0 bond formation via the radical coupling pathway. Herein, we manipulate the equatorial backbone ligand, change the doubly charged bda(2-) ligand to a singly charged tpc- (2,2':6',2 ''-terpyridine-6-carboxylate) ligand, and study the structure activity relationship. Surprisingly, kinetics measurements revealed that the resulting Ru-tpc catalyst catalyzes water oxidation via the water nucleophilic attack pathway, which is different from the Ru-bda catalyst. The O-O bond formation Gibbs free energy of activation (AGO) at T = 298.15 K was 20.2 +/- 1.7 kcal mol(-1). The electronic structures of a series of Ru-v=O species were studied by density function theory calculations, revealing that the spin density of O-Ru=O of Ru-v=O is largely dependent on the surrounding ligands. Seven coordination configuration significantly enhances the radical character of Ru-v=O.

  • 6. Hou, Jungang
    et al.
    Sun, Yiqing
    Cao, Shuyan
    Wu, Yunzhen
    Chen, Hong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology. KTH, School of Information and Communication Technology (ICT), Centres, Zhejiang-KTH Joint Research Center of Photonics, JORCEP.
    Graphene Dots Embedded Phosphide Nanosheet-Assembled Tubular Arrays for Efficient and Stable Overall Water Splitting2017In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 9, no 29, p. 24600-24607Article in journal (Refereed)
    Abstract [en]

    Bifunctional electrocatalysts are highly desired for overall water splitting. Herein, the design and fabrication of three-dimensional (3D) hierarchical earth-abundant transition bimetallic phosphide arrays constructed by one-dimensional tubular array that was derived from assembling two-dimensional nanosheet framework has been reported by tailoring the Co/Ni ratio and tunable morphologies, and zero-dimensional (0D) graphene dots were embedded on Co-Ni phosphide matrix to construct 0D/2D tubular array as a highly efficient electrode in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). On the basis of advanced merits, such as the high surface-active sites, well-dispersed graphene dots, and enhanced electron transfer capacity as well as the confinement effect of the graphene dots on the nanosheets, the integrated GDs/Co0.8Ni0.2P tubular arrays as anode and cathode exhibit excellent OER and HER performance. By use of GDs/Co0.8Ni0.2 arrays in the two-electrode setup of the device, a remarkable electrocatalytic performance for full water splitting has been achieved with a high current density of 10 mA cm-2 at 1.54 V and outstanding long-term operation stability in an alkaline environment, indicating a promising system based on nonprecious-metal electrocatalysts toward potential practical devices of overall water splitting.

  • 7.
    Leandri, Valentina
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Daniel, Quentin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Chen, Hong
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Gardner, James M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Kloo, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Electronic and Structural Effects of Inner Sphere Coordination of Chloride to a Homoleptic Copper(II) Diimine Complex2018In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 57, no 8, p. 4556-4562Article in journal (Refereed)
    Abstract [en]

    The reaction of CuCl2 with 2,9-dimethyl-1,10-phenanthroline (dmp) does not lead to the formation of [Cu(dmp)(2)](Cl)(2) but instead to [Cu(dmp)(2)Cl]Cl, a 5-coordinated complex, in which one chloride is directly coordinated to the metal center. Attempts at removing the coordinated chloride by changing the counterion by metathesis were unsuccessful and resulted only in the exchange of the noncoordinated chloride, as confirmed from a crystal structure analysis. Complex [Cu-(dmp)(2)Cl]PF6 exhibits a reversible cyclic voltammogram characterized by a significant peak splitting between the reductive and oxidative waves (0.85 and 0.60 V vs NHE, respectively), with a half-wave potential E-1/2 = 0.73 V vs NHE. When reduced electrochemically, the complex does not convert into [Cu(dmp)(2)](+), as one may expect. Instead, [Cu(dmp)(2)](+) is isolated as a product when the reduction of [Cu(dmp)(2)Cl]PF6 is performed with L-ascorbic acid, as confirmed by electrochemistry, NMR spectroscopy, and diffractometry. [Cu(dmp)(2)](2+) complexes can be synthesized starting from Cu(II) salts with weakly and noncoordinating counterions, such as perchlorate. Growth of [Cu(dmp)(2)](ClO4)(2) crystals in acetonitrile results in a 5-coordinated complex, [Cu(dmp)(2)(CH3CN)](ClO4)(2), in which a solvent molecule is coordinated to the metal center. However, solvent coordination is associated with a dynamic decoordination-coordination behavior upon reduction and oxidation. Hence, the cyclic voltammogram of [Cu(dmp)(2)(CH3CN)](2+) is identical to the one of [Cu(dmp)(2)](+), if the measurements are performed in acetonitrile. The current results show that halide ions in precursors to Cu(II) metal-organic coordination compound synthesis, and most likely also other multivalent coordination centers, are not readily exchanged when exposed to presumed strongly binding and chelating ligand, and thus special care needs to be taken with respect to product characterization.

  • 8.
    Wang, Lei
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Fan, Ke
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Chen, Hong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Daniel, Quentin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Philippe, Bertrand
    Rensmo, Håkan
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Towards efficient and robust anodes for water splitting: Immobilization of Ru catalysts on carbon electrode and hematite by in situ polymerization2017In: Catalysis Today, ISSN 0920-5861, E-ISSN 1873-4308, Vol. 290, p. 73-77Article in journal (Refereed)
    Abstract [en]

    Ru-bda based molecular water oxidation catalysts 1 and 2 (H(2)bda = 2,2'-bipyridine-6,6'-dicarboxylic acid) containing a thiophene group are attached to the surfaces of electrodes by the method of electropolymerization. The Ru-bda molecular catalyst functionalized graphite carbon electrode can catalyze water oxidation efficiently under a overpotential of ca 500 mV to obtain current density of 5 mA cm(-2); and the similarly functionalized photoelectrode based on alpha-Fe2O3 (hematite) film can work as an photoanode for light driven water splitting.

  • 9.
    Wang, Linqin
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Zhang, Jinbao
    Monash Univ, Dept Mat Sci & Engn, 22 Alliance Lane, Clayton, Vic 3800, Australia..
    Liu, Peng
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD.
    Xu, Bo
    Uppsala Univ, Dept Chem, Angstrom Lab, Box 523, S-75120 Uppsala, Sweden..
    Zhang, Biaobiao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Chen, Hong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Inge, A. Ken
    Stockholm Univ, Dept Mat & Environm Chem MMK, SE-10691 Stockholm, Sweden..
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wang, Haoxin
    Dalian Univ Technol, Inst Artificial Photosynth, DUT KTH Joint Educ & Res Ctr Mol Devices, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Cheng, Yi-Bing
    Monash Univ, Dept Mat Sci & Engn, 22 Alliance Lane, Clayton, Vic 3800, Australia..
    Kloo, Lars
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. Dalian Univ Technol, Inst Artificial Photosynth, DUT, State Key Lab Fine Chem, Dalian 116024, Peoples R China..
    Design and synthesis of dopant-free organic hole-transport materials for perovskite solar cells2018In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 54, no 69Article in journal (Refereed)
    Abstract [en]

    Two novel dopant-free hole-transport materials (HTMs) with spiro[dibenzo[c,h]xanthene-7,9-fluorene] (SDBXF) skeletons were prepared via facile synthesis routes. A power conversion efficiency of 15.9% in perovskite solar cells is attained by using one HTM without dopants, which is much higher than undoped Spiro-OMeTAD-based devices (10.8%). The crystal structures of both new HTMs were systematically investigated to reveal the reasons behind such differences in performance and to indicate the design principles of more advanced HTMs.

  • 10.
    Zhang, Peili
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Chen, Hong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Wang, Mei
    Yang, Yong
    Jiang, Jian
    Zhang, Biaobiao
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Duan, Lele
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Daniel, Quentin
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Li, Fusheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Chemistry. State Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Centre on Molecular Devices, Dalian University of Technology, 116023 Dalian, China .
    Gas-templating of hierarchically structured Ni-Co-P for efficient electrocatalytic hydrogen evolution2017In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 5, no 16, p. 7564-7570Article in journal (Refereed)
    Abstract [en]

    One of the grand challenges for developing scalable and sustainable hydrogen producing systems is the lack of efficient and robust earth-abundant element based catalysts for the hydrogen evolution reaction (HER). Herein, a hierarchically structured Ni-Co-P film was fabricated via a gas templating electro-deposition method. This film exhibits remarkably high catalytic performance for the HER in 1 M KOH with respective current densities of -10 and -500 mA cm(-2) at the overpotentials of -30 and -185 mV with a Tafel slope of 41 mV dec(-1). A controlled potential electrolysis experiment demonstrates that the as-prepared Ni-Co-P film is an efficient and robust catalyst with a faradaic efficiency close to 100%. Systematic characterization suggests that the unique hierarchical structure and the mutual participation of nano-sized Ni/Co based components are responsible for the high HER catalytic activity.

  • 11.
    Zhang, Peili
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Li, L.
    Nordlund, D.
    Chen, Hong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Fan, Lizhou
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Zhang, Biaobiao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Sheng, Xia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Daniel, Quentin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation2018In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, no 1, article id 381Article in journal (Refereed)
    Abstract [en]

    Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm-2. The core-shell NiFeCu electrode exhibits pH-dependent oxygen evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.

  • 12. Zhuang, Zanyong
    et al.
    Chen, Hong
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Organic Chemistry.
    Lin, Zhang
    Dang, Zhi
    Mn2O3 hollow spheres synthesized based on an ion-exchange strategy from amorphous calcium carbonate for highly efficient trace-level uranyl extraction2016In: ENVIRONMENTAL SCIENCE-NANO, ISSN 2051-8153, Vol. 3, no 6, p. 1254-1258Article in journal (Refereed)
    Abstract [en]

    Well-defined hierarchical hollow spheres constructed from Mn2O3 quantum dots were prepared via an ion-exchange strategy starting from small-sized amorphous calcium carbonate. They show outstanding capability to extract trace-level uranyl from field water.

1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf