Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Karaoǧuz, Hakan
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Işil Bozma, H.
    Merging appearance-based spatial knowledge in multirobot systems2016In: IEEE International Conference on Intelligent Robots and Systems, IEEE, 2016, p. 5107-5112Conference paper (Refereed)
    Abstract [en]

    This paper considers the merging of appearancebased spatial knowledge among robots having compatible visual sensing. Each robot is assumed to retain its knowledge in its individual long-term spatial memory where i) the place knowledge and their spatial relations are retained in an organized manner in place and map memories respectively; and ii) a 'place' refers to a spatial region as designated by a collection of associated appearances. In the proposed approach, each robot communicates with another robot, receives its memory and then merges the received knowledge with its own. The novelty of the merging process is that it is done in two stages: merging of place knowledge followed by the merging of map knowledge. As each robot's place memory is processed as a whole or in portions, the merging process scales easily with respect to the amount and overlap of the appearance data. Furthermore, the merging can be done in decentralized manner. Our experimental results with a team of three robots demonstrate that the resulting merged knowledge enables the robots to reason about learned places.

  • 2.
    Kragic, Danica
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Gustafson, Joakim
    KTH, School of Electrical Engineering and Computer Science (EECS), Speech, Music and Hearing, TMH.
    Karaoǧuz, Hakan
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Jensfelt, Patric
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Krug, Robert
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Interactive, collaborative robots: Challenges and opportunities2018In: IJCAI International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence , 2018, p. 18-25Conference paper (Refereed)
    Abstract [en]

    Robotic technology has transformed manufacturing industry ever since the first industrial robot was put in use in the beginning of the 60s. The challenge of developing flexible solutions where production lines can be quickly re-planned, adapted and structured for new or slightly changed products is still an important open problem. Industrial robots today are still largely preprogrammed for their tasks, not able to detect errors in their own performance or to robustly interact with a complex environment and a human worker. The challenges are even more serious when it comes to various types of service robots. Full robot autonomy, including natural interaction, learning from and with human, safe and flexible performance for challenging tasks in unstructured environments will remain out of reach for the foreseeable future. In the envisioned future factory setups, home and office environments, humans and robots will share the same workspace and perform different object manipulation tasks in a collaborative manner. We discuss some of the major challenges of developing such systems and provide examples of the current state of the art.

  • 3.
    Mancini, Massimiliano
    et al.
    Sapienza Univ Rome, Rome, Italy.;Fdn Bruno Kessler, Trento, Italy..
    Karaoǧuz, Hakan
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Ricci, Elisa
    Fdn Bruno Kessler, Trento, Italy.;Univ Trento, Trento, Italy..
    Jensfelt, Patric
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Caputo, Barbara
    Sapienza Univ Rome, Rome, Italy.;Italian Inst Technol, Milan, Italy..
    Kitting in the Wild through Online Domain Adaptation2018In: 2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) / [ed] Maciejewski, AA Okamura, A Bicchi, A Stachniss, C Song, DZ Lee, DH Chaumette, F Ding, H Li, JS Wen, J Roberts, J Masamune, K Chong, NY Amato, N Tsagwarakis, N Rocco, P Asfour, T Chung, WK Yasuyoshi, Y Sun, Y Maciekeski, T Althoefer, K AndradeCetto, J Chung, WK Demircan, E Dias, J Fraisse, P Gross, R Harada, H Hasegawa, Y Hayashibe, M Kiguchi, K Kim, K Kroeger, T Li, Y Ma, S Mochiyama, H Monje, CA Rekleitis, I Roberts, R Stulp, F Tsai, CHD Zollo, L, IEEE , 2018, p. 1103-1109Conference paper (Refereed)
    Abstract [en]

    Technological developments call for increasing perception and action capabilities of robots. Among other skills, vision systems that can adapt to any possible change in the working conditions are needed. Since these conditions are unpredictable, we need benchmarks which allow to assess the generalization and robustness capabilities of our visual recognition algorithms. In this work we focus on robotic kitting in unconstrained scenarios. As a first contribution, we present a new visual dataset for the kitting task. Differently from standard object recognition datasets, we provide images of the same objects acquired under various conditions where camera, illumination and background are changed. This novel dataset allows for testing the robustness of robot visual recognition algorithms to a series of different domain shifts both in isolation and unified. Our second contribution is a novel online adaptation algorithm for deep models, based on batch-normalization layers, which allows to continuously adapt a model to the current working conditions. Differently from standard domain adaptation algorithms, it does not require any image from the target domain at training time. We benchmark the performance of the algorithm on the proposed dataset, showing its capability to fill the gap between the performances of a standard architecture and its counterpart adapted offline to the given target domain.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf