Please wait ... |

Refine search result

CiteExportLink to result list
http://kth.diva-portal.org/smash/resultList.jsf?query=&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22personId%22%3A%22authority-person%3A39141%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_upper_j_idt488_recordPermLink",{id:"formSmash:upper:j_idt488:recordPermLink",widgetVar:"widget_formSmash_upper_j_idt488_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt488_j_idt490",{id:"formSmash:upper:j_idt488:j_idt490",widgetVar:"widget_formSmash_upper_j_idt488_j_idt490",target:"formSmash:upper:j_idt488:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Cite

Citation styleapa ieee modern-language-association-8th-edition vancouver Other style $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt506",{id:"formSmash:upper:j_idt506",widgetVar:"widget_formSmash_upper_j_idt506",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt506",e:"change",f:"formSmash",p:"formSmash:upper:j_idt506",u:"formSmash:upper:otherStyle"},ext);}}});});

- apa
- ieee
- modern-language-association-8th-edition
- vancouver
- Other style

Languagede-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Other locale $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt517",{id:"formSmash:upper:j_idt517",widgetVar:"widget_formSmash_upper_j_idt517",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:upper:j_idt517",e:"change",f:"formSmash",p:"formSmash:upper:j_idt517",u:"formSmash:upper:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Other locale

Output formathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_upper_j_idt527",{id:"formSmash:upper:j_idt527",widgetVar:"widget_formSmash_upper_j_idt527"});});

- html
- text
- asciidoc
- rtf

Rows per page

- 5
- 10
- 20
- 50
- 100
- 250

Sort

- Standard (Relevance)
- Author A-Ö
- Author Ö-A
- Title A-Ö
- Title Ö-A
- Publication type A-Ö
- Publication type Ö-A
- Issued (Oldest first)
- Issued (Newest first)
- Created (Oldest first)
- Created (Newest first)
- Last updated (Oldest first)
- Last updated (Newest first)
- Disputation date (earliest first)
- Disputation date (latest first)

- Standard (Relevance)
- Author A-Ö
- Author Ö-A
- Title A-Ö
- Title Ö-A
- Publication type A-Ö
- Publication type Ö-A
- Issued (Oldest first)
- Issued (Newest first)
- Created (Oldest first)
- Created (Newest first)
- Last updated (Oldest first)
- Last updated (Newest first)
- Disputation date (earliest first)
- Disputation date (latest first)

Select

The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.

1. Fast Ewald summation for free-space Stokes potentials af Klinteberg, Ludvig PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt591",{id:"formSmash:items:resultList:0:j_idt591",widgetVar:"widget_formSmash_items_resultList_0_j_idt591",onLabel:"af Klinteberg, Ludvig ",offLabel:"af Klinteberg, Ludvig ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt594",{id:"formSmash:items:resultList:0:j_idt594",widgetVar:"widget_formSmash_items_resultList_0_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Saffar Shamshirgar, DavoudKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.Tornberg, Anna-KarinKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:0:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Fast Ewald summation for free-space Stokes potentials2017In: Research in the Mathematical Sciences, ISSN 2197-9847, Vol. 4, no 1Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_0_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:0:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_0_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We present a spectrally accurate method for the rapid evaluation of free-space Stokes potentials, i.e., sums involving a large number of free space Green’s functions. We consider sums involving stokeslets, stresslets and rotlets that appear in boundary integral methods and potential methods for solving Stokes equations. The method combines the framework of the Spectral Ewald method for periodic problems (Lindbo and Tornberg in J Comput Phys 229(23):8994–9010, 2010. doi: 10.1016/j.jcp.2010.08.026 ), with a very recent approach to solving the free-space harmonic and biharmonic equations using fast Fourier transforms (FFTs) on a uniform grid (Vico et al. in J Comput Phys 323:191–203, 2016. doi: 10.1016/j.jcp.2016.07.028 ). Convolution with a truncated Gaussian function is used to place point sources on a grid. With precomputation of a scalar grid quantity that does not depend on these sources, the amount of oversampling of the grids with Gaussians can be kept at a factor of two, the minimum for aperiodic convolutions by FFTs. The resulting algorithm has a computational complexity of $$O(N \log N)$$ O ( N log N ) for problems with N sources and targets. Comparison is made with a fast multipole method to show that the performance of the new method is competitive.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:0:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 2. Error estimation for quadrature by expansion in layer potential evaluation af Klinteberg, Ludvig PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt591",{id:"formSmash:items:resultList:1:j_idt591",widgetVar:"widget_formSmash_items_resultList_1_j_idt591",onLabel:"af Klinteberg, Ludvig ",offLabel:"af Klinteberg, Ludvig ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt594",{id:"formSmash:items:resultList:1:j_idt594",widgetVar:"widget_formSmash_items_resultList_1_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tornberg, Anna-KarinKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:1:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Error estimation for quadrature by expansion in layer potential evaluation2017In: Advances in Computational Mathematics, ISSN 1019-7168, E-ISSN 1572-9044, Vol. 43, no 1, p. 195-234Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_1_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:1:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_1_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); In boundary integral methods it is often necessary to evaluate layer potentials on or close to the boundary, where the underlying integral is difficult to evaluate numerically. Quadrature by expansion (QBX) is a new method for dealing with such integrals, and it is based on forming a local expansion of the layer potential close to the boundary. In doing so, one introduces a new quadrature error due to nearly singular integration in the evaluation of expansion coefficients. Using a method based on contour integration and calculus of residues, the quadrature error of nearly singular integrals can be accurately estimated. This makes it possible to derive accurate estimates for the quadrature errors related to QBX, when applied to layer potentials in two and three dimensions. As examples we derive estimates for the Laplace and Helmholtz single layer potentials. These results can be used for parameter selection in practical applications.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:1:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 3. An accurate integral equation method for Stokes flow with piecewise smooth boundaries Bystricky, Lukas PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt591",{id:"formSmash:items:resultList:2:j_idt591",widgetVar:"widget_formSmash_items_resultList_2_j_idt591",onLabel:"Bystricky, Lukas ",offLabel:"Bystricky, Lukas ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt594",{id:"formSmash:items:resultList:2:j_idt594",widgetVar:"widget_formSmash_items_resultList_2_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Pålsson, SaraKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.Tornberg, Anna-KarinKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:2:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); An accurate integral equation method for Stokes flow with piecewise smooth boundariesManuscript (preprint) (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_2_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:2:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_2_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Two-dimensional Stokes flow through a periodic channel is considered. The channel walls need only be Lipschitz continuous, in other words they are allowed to have corners. Boundary integral methods are an attractive numerical method to solve the Stokes equations, as the problem can be reformulated into a problem that must be solved only over the boundary of the domain. When the boundary is at least C1 smooth, the boundary integral kernel is a compact operator, and traditional Nyström methods can be used to obtain highly accurate solutions. In the case of Lipschitz continuous boundaries however, obtaining accurate solutions using the standard Nyström method can require high resolution. We adapt a technique known as recursively compressed inverse preconditioning to accurately solve the Stokes equations without requiring any more resolution than is needed to resolve the boundary. Combined with a periodic fast summation method we construct a method that is O(N log N ) where N is the number of quadrature points on the boundary. We demonstrate the robustness of this method by extending an existing boundary integral method for viscous drops to handle the movement of drops near corners.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:2:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 4. Partition of unity extension of functions on complex domains Fryklund, Fredrik PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt591",{id:"formSmash:items:resultList:3:j_idt591",widgetVar:"widget_formSmash_items_resultList_3_j_idt591",onLabel:"Fryklund, Fredrik ",offLabel:"Fryklund, Fredrik ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt594",{id:"formSmash:items:resultList:3:j_idt594",widgetVar:"widget_formSmash_items_resultList_3_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Lehto, ErikKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.Tornberg, Anna-KarinKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:3:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Partition of unity extension of functions on complex domains2018In: Journal of Computational Physics, ISSN 0021-9991, E-ISSN 1090-2716, Vol. 375, p. 57-79Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_3_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:3:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_3_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We introduce an efficient algorithm, called partition of unity extension or PUX, to construct an extension of desired regularity of a function given on a complex multiply connected domain in 2D. Function extension plays a fundamental role in extending the applicability of boundary integral methods to inhomogeneous partial differential equations with embedded domain techniques. Overlapping partitions are placed along the boundaries, and a local extension of the function is computed on each patch using smooth radial basis functions; a trivially parallel process. A partition of unity method blends the local extrapolations into a global one, where weight functions impose compact support. The regularity of the extended function can be controlled by the construction of the partition of unity function. We evaluate the performance of the PUX method in the context of solving the Poisson equation on multiply connected domains using a boundary integral method and a spectral solver. With a suitable choice of parameters the error converges as a tenth order method down to 10−14.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:3:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 5. Simulation and validation of surfactant-laden drops in two-dimensional Stokes flow Pålsson, Sara PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt591",{id:"formSmash:items:resultList:4:j_idt591",widgetVar:"widget_formSmash_items_resultList_4_j_idt591",onLabel:"Pålsson, Sara ",offLabel:"Pålsson, Sara ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt594",{id:"formSmash:items:resultList:4:j_idt594",widgetVar:"widget_formSmash_items_resultList_4_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.). KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Siegel, MichaelNew Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA..Tornberg, Anna-KarinKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:4:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Simulation and validation of surfactant-laden drops in two-dimensional Stokes flow2019In: Journal of Computational Physics, ISSN 0021-9991, E-ISSN 1090-2716, Vol. 386, p. 218-247Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_4_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:4:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_4_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Performing highly accurate simulations of droplet systems is a challenging problem. This is primarily due to the interface dynamics which is complicated further by the addition of surfactants. This paper presents a boundary integral method for computing the evolution of surfactant-covered droplets in 2D Stokes flow. The method has spectral accuracy in space and the adaptive time-stepping scheme allows for control of the temporal errors. Previously available semi-analytical solutions (based on conformal-mapping techniques) are extended to include surfactants, and a set of algorithms is introduced to detail their evaluation. These semi-analytical solutions are used to validate and assess the accuracy of the boundary integral method, and it is demonstrated that the presented method maintains its high accuracy even when droplets are in close proximity.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:4:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 6. An integral equation method for closely interacting surfactant-covered droplets in wall-confined Stokes flow Pålsson, Sara PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt591",{id:"formSmash:items:resultList:5:j_idt591",widgetVar:"widget_formSmash_items_resultList_5_j_idt591",onLabel:"Pålsson, Sara ",offLabel:"Pålsson, Sara ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt594",{id:"formSmash:items:resultList:5:j_idt594",widgetVar:"widget_formSmash_items_resultList_5_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tornberg, Anna-KarinKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:5:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); An integral equation method for closely interacting surfactant-covered droplets in wall-confined Stokes flowManuscript (preprint) (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_5_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:5:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_5_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); A highly accurate method for simulating surfactant-covered droplets in two-dimensional Stokes flow with solid boundaries is presented. The method handles both periodic channel flows of arbitrary shape and stationary solid constrictions. A boundary integral method together with a special quadrature scheme is applied to solve the Stokes equations to high accuracy, also for droplets in close interaction. The problem is considered in a periodic setting and Ewald decompositions for the Stokeslet and stresslet are derived to make the periodic sums convergent. Computations are sped up using the spectral Ewald method. The time evolution is handled with a fourth order, adaptive, implicit-explicit time-stepping scheme. The numerical method is tested through several convergence studies and other challenging examples and is shown to handle drops in close proximity both to other drops and solid objects to a high accuracy.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:5:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 7. Spectrally accurate Ewald summation for the Yukawa potential in two dimensions Pålsson, Sara PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt591",{id:"formSmash:items:resultList:6:j_idt591",widgetVar:"widget_formSmash_items_resultList_6_j_idt591",onLabel:"Pålsson, Sara ",offLabel:"Pålsson, Sara ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt594",{id:"formSmash:items:resultList:6:j_idt594",widgetVar:"widget_formSmash_items_resultList_6_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tornberg, Anna-KarinKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:6:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Spectrally accurate Ewald summation for the Yukawa potential in two dimensionsManuscript (preprint) (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_6_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:6:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_6_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); An Ewald decomposition of the two-dimensional Yukawa potential and its derivative is presented for both the periodic and the free-space case. These modified Bessel functions of the second kind of zeroth and first degrees are used e.g. when solving the modified Helmholtz equation using a boundary integral method. The spectral Ewald method is used to compute arising sums at O(N log N ) cost for N source and target points. To facilitate parameter selection, truncation-error estimates are developed for both the real-space sum and the Fourier-space sum, and are shown to estimate the errors well.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:6:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 8. A comparison of the Spectral Ewald and Smooth Particle Mesh Ewald methods in GROMACS Saffar Shamshirgar, Davood PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt591",{id:"formSmash:items:resultList:7:j_idt591",widgetVar:"widget_formSmash_items_resultList_7_j_idt591",onLabel:"Saffar Shamshirgar, Davood ",offLabel:"Saffar Shamshirgar, Davood ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt594",{id:"formSmash:items:resultList:7:j_idt594",widgetVar:"widget_formSmash_items_resultList_7_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hess, BerkKTH, Centres, Science for Life Laboratory, SciLifeLab.Tornberg, Anna-KarinKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:7:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A comparison of the Spectral Ewald and Smooth Particle Mesh Ewald methods in GROMACSManuscript (preprint) (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_7_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:7:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_7_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The smooth particle mesh Ewald (SPME) method is an FFT based methodfor the fast evaluation of electrostatic interactions under periodic boundaryconditions. A highly optimized implementation of this method is availablein GROMACS, a widely used software for molecular dynamics simulations.In this article, we compare a more recent method from the same family ofmethods, the spectral Ewald (SE) method, to the SPME method in termsof performance and efficiency. We consider serial and parallel implementa-tions of both methods for single and multiple core computations on a desktopmachine as well as the Beskow supercomputer at KTH Royal Institute ofTechnology. The implementation of the SE method has been well optimized,however not yet comparable to the level of the SPME implementation thathas been improved upon for many years. We show that the SE method isvery efficient whenever used to achieve high accuracy and that it already atthis level of optimization can be competitive for low accuracy demands.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:7:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 9. Regularized FMM for MD simulations Saffar Shamshirgar, Davood PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt591",{id:"formSmash:items:resultList:8:j_idt591",widgetVar:"widget_formSmash_items_resultList_8_j_idt591",onLabel:"Saffar Shamshirgar, Davood ",offLabel:"Saffar Shamshirgar, Davood ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt594",{id:"formSmash:items:resultList:8:j_idt594",widgetVar:"widget_formSmash_items_resultList_8_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Hess, BerkKTH, Centres, Science for Life Laboratory, SciLifeLab.Yokota, RioTornberg, Anna-KarinKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:8:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Regularized FMM for MD simulationsManuscript (preprint) (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_8_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:8:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_8_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); A regularized fast multipole method (FMM) which approximately conserves the total energy in Molecular dynamics (MD) simulations is presented. The new algorithm introduces a regularization which eliminates the discontinuity inherent in the FMM. This allows us to use FMM in simulations as a substitute for widely used FFT based methods. For a system of N particles, the computational complexity of the resulting method is still of order N though with a larger constant compared to the plain FMM. Numerical examples are provided to confirm that the new algorithm improves the accuracy and approximately conserves the long term total energy.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:8:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 10. A fast multipole method for evaluating exponential integral type kernels Saffar Shamshirgar, Davood PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt591",{id:"formSmash:items:resultList:9:j_idt591",widgetVar:"widget_formSmash_items_resultList_9_j_idt591",onLabel:"Saffar Shamshirgar, Davood ",offLabel:"Saffar Shamshirgar, Davood ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt594",{id:"formSmash:items:resultList:9:j_idt594",widgetVar:"widget_formSmash_items_resultList_9_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:9:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tornberg, Anna-KarinKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:9:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A fast multipole method for evaluating exponential integral type kernelsManuscript (preprint) (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_9_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:9:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_9_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We present a fast multipole method for evaluation of sums with exponential integral type kernels. These sums appear while solving free space Poisson problems in two dimensions and in the derivation of 1d-periodic Ewald sums. The presented method uses recurrence relations to derive multipole expansions for computing interactions between particles and far clusters.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:9:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 11. Fast Ewald summation for electrostatic potentials with arbitrary periodicity Saffar Shamshirgar, Davood PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt591",{id:"formSmash:items:resultList:10:j_idt591",widgetVar:"widget_formSmash_items_resultList_10_j_idt591",onLabel:"Saffar Shamshirgar, Davood ",offLabel:"Saffar Shamshirgar, Davood ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt594",{id:"formSmash:items:resultList:10:j_idt594",widgetVar:"widget_formSmash_items_resultList_10_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:10:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tornberg, Anna-KarinKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:10:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Fast Ewald summation for electrostatic potentials with arbitrary periodicityManuscript (preprint) (Other academic)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_10_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:10:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_10_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); A unified treatment for fast and spectrally accurate evaluation of electrostatic potentials subject to periodic boundary conditions in any or none of the three space dimensions is presented. Ewald decomposition is used to split the problem into a real space and a Fourier space part, and the FFT based Spectral Ewald (SE) method is used to accelerate the computation of the latter. A key component in the unified treatment is an FFT based solution technique for the free-space Poisson problem in three, two or one dimensions, depending on the number of non-periodic directions. The cost of calculations is furthermore reduced by employing an adaptive FFT for the doubly and singly periodic cases, allowing for different local upsampling rates. The SE method will always be most efficient for the triply periodic case as the cost for computing FFTs will be the smallest, whereas the computational cost for the rest of the algorithm is essentially independent of the periodicity. We show that the cost of removing periodic boundary conditions from one or two directions out of three will only marginally increase the total run time. Our comparisons also show that the computational cost of the SE method for the free-space case is typically about four times more expensive as compared to the triply periodic case.

The Gaussian window function previously used in the SE method, is here compared to an approximation of the Kaiser-Bessel window function, recently introduced. With a carefully tuned shape parameter that is selected based on an error estimate for this new window function, runtimes for the SE method can be further reduced.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:10:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 12. Regularizing the fast multipole method for use in molecular simulation Shamshirgar, D. S. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt591",{id:"formSmash:items:resultList:11:j_idt591",widgetVar:"widget_formSmash_items_resultList_11_j_idt591",onLabel:"Shamshirgar, D. S. ",offLabel:"Shamshirgar, D. S. ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt594",{id:"formSmash:items:resultList:11:j_idt594",widgetVar:"widget_formSmash_items_resultList_11_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:11:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Yokota, R.Tokyo Inst Technol, Global Sci Informat & Comp Ctr, Tokyo, Japan..Tornberg, Anna-KarinKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA. KTH, Centres, SeRC - Swedish e-Science Research Centre.Hess, BerkKTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:11:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Regularizing the fast multipole method for use in molecular simulation2019In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 151, no 23, article id 234113Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_11_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:11:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_11_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The parallel scaling of classical molecular dynamics simulations is limited by the communication of the 3D fast Fourier transform of the particle-mesh electrostatics methods, which are used by most molecular simulation packages. The Fast Multipole Method (FMM) has much lower communication requirements and would, therefore, be a promising alternative to mesh based approaches. However, the abrupt switch from direct particle-particle interactions to approximate multipole interactions causes a violation of energy conservation, which is required in molecular dynamics. To counteract this effect, higher accuracy must be requested from the FMM, leading to a substantially increased computational cost. Here, we present a regularization of the FMM that provides analytical energy conservation. This allows the use of a precision comparable to that used with particle-mesh methods, which significantly increases the efficiency. With an application to a 2D system of dipolar molecules representative of water, we show that the regularization not only provides energy conservation but also significantly improves the accuracy. The latter is possible due to the local charge neutrality in molecular systems. Additionally, we show that the regularization reduces the multipole coefficients for a 3D water model even more than in our 2D example.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:11:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 13. A local target specific quadrature by expansion method for evaluation of layer potentials in 3D Siegel, M.et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt594",{id:"formSmash:items:resultList:12:j_idt594",widgetVar:"widget_formSmash_items_resultList_12_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:12:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tornberg, Anna-KarinKTH, School of Engineering Sciences (SCI), Mathematics (Dept.). KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:12:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A local target specific quadrature by expansion method for evaluation of layer potentials in 3D2018In: Journal of Computational Physics, ISSN 0021-9991, E-ISSN 1090-2716, Vol. 364, p. 365-392Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_12_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:12:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_12_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Accurate evaluation of layer potentials is crucial when boundary integral equation methods are used to solve partial differential equations. Quadrature by expansion (QBX) is a recently introduced method that can offer high accuracy for singular and nearly singular integrals, using truncated expansions to locally represent the potential. The QBX method is typically based on a spherical harmonics expansion which when truncated at order p has O(p2) terms. This expansion can equivalently be written with p terms, however paying the price that the expansion coefficients will depend on the evaluation/target point. Based on this observation, we develop a target specific QBX method, and apply it to Laplace's equation on multiply-connected domains. The method is local in that the QBX expansions only involve information from a neighborhood of the target point. An analysis of the truncation error in the QBX expansions is presented, practical parameter choices are discussed and the method is validated and tested on various problems.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:12:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 14. A highly accurate boundary integral equation method for surfactant-laden drops in 3D Sorgentone, Chiara PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt591",{id:"formSmash:items:resultList:13:j_idt591",widgetVar:"widget_formSmash_items_resultList_13_j_idt591",onLabel:"Sorgentone, Chiara ",offLabel:"Sorgentone, Chiara ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt594",{id:"formSmash:items:resultList:13:j_idt594",widgetVar:"widget_formSmash_items_resultList_13_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.). KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:13:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tornberg, Anna-KarinKTH, School of Engineering Sciences (SCI), Mathematics (Dept.). KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:13:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A highly accurate boundary integral equation method for surfactant-laden drops in 3D2018In: Journal of Computational Physics, ISSN 0021-9991, E-ISSN 1090-2716, Vol. 360, p. 167-191Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_13_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:13:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_13_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The presence of surfactants alters the dynamics of viscous drops immersed in an ambient viscous fluid. This is specifically true at small scales, such as in applications of droplet based microfluidics, where the interface dynamics become of increased importance. At such small scales, viscous forces dominate and inertial effects are often negligible. Considering Stokes flow, a numerical method based on a boundary integral formulation is presented for simulating 3D drops covered by an insoluble surfactant. The method is able to simulate drops with different viscosities and close interactions, automatically controlling the time step size and maintaining high accuracy also when substantial drop deformation appears. To achieve this, the drop surfaces as well as the surfactant concentration on each surface are represented by spherical harmonics expansions. A novel reparameterization method is introduced to ensure a high-quality representation of the drops also under deformation, specialized quadrature methods for singular and nearly singular integrals that appear in the formulation are evoked and the adaptive time stepping scheme for the coupled drop and surfactant evolution is designed with a preconditioned implicit treatment of the surfactant diffusion.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:13:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 15. Numerical simulation of 3D surfactant-covered drops in a strong electric field Sorgentone, Chiara PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt591",{id:"formSmash:items:resultList:14:j_idt591",widgetVar:"widget_formSmash_items_resultList_14_j_idt591",onLabel:"Sorgentone, Chiara ",offLabel:"Sorgentone, Chiara ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt594",{id:"formSmash:items:resultList:14:j_idt594",widgetVar:"widget_formSmash_items_resultList_14_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:14:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tornberg, Anna-KarinKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:14:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Numerical simulation of 3D surfactant-covered drops in a strong electric field2018In: Rendiconti del Seminario Matematico, ISSN 0373-1243, Vol. 76, no 2, p. 199-206Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_14_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:14:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_14_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); The numerical literature for 3D surfactant-laden drops placed in electric fields is extremely limited due to the difficulties associated with the deforming drop surfaces, interface conditions and the multi-physics nature of the problem. Our numerical method is based on a boundary integral formulation of the Stokes equations and the leaky-dieletric model; it is able to simulate multiple drops with different viscosities covered by an insoluble surfactant; it is adaptive in time and uses special quadrature methods to deal with the singular and nearly-singular integrals that appear in the formulation. In this proceeding we will show how the method is able to maintain a high quality representation of the drops even under substantial deformations due to strong electric fields.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:14:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 16. A 3D boundary integral method for the electrohydrodynamics of surfactant-covered drops Sorgentone, Chiara PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt591",{id:"formSmash:items:resultList:15:j_idt591",widgetVar:"widget_formSmash_items_resultList_15_j_idt591",onLabel:"Sorgentone, Chiara ",offLabel:"Sorgentone, Chiara ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt594",{id:"formSmash:items:resultList:15:j_idt594",widgetVar:"widget_formSmash_items_resultList_15_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:15:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tornberg, Anna-KarinKTH, School of Engineering Sciences (SCI), Mathematics (Dept.). KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.Vlahovska, Petia M.Northwestern Univ, Engn Sci & Appl Math, Evanston, IL 60208 USA..PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:15:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); A 3D boundary integral method for the electrohydrodynamics of surfactant-covered drops2019In: Journal of Computational Physics, ISSN 0021-9991, E-ISSN 1090-2716, Vol. 389, p. 111-127Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_15_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:15:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_15_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); We present a highly accurate numerical method based on a boundary integral formulation and the leaky dielectric model to study the dynamics of surfactant-covered drops in the presence of an applied electric field. The method can simulate interacting 3D drops (no axisymmetric simplification) in close proximity, can consider different viscosities, is adaptive in time and able to handle substantial drop deformation. For each drop global representations of the variables based on spherical harmonics expansions are used and the spectral accuracy is achieved by designing specific numerical tools: a specialized quadrature method for the singular and nearly singular integrals that appear in the formulation, a general preconditioner for the implicit treatment of the surfactant diffusion and a reparametrization procedure able to ensure a high-quality representation of the drops also under deformation. Our numerical method is validated against theoretical, numerical and experimental results available in the literature, as well as a new second-order theory developed for a surfactant-laden drop placed in a quadrupole electric field.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:15:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); 17. Fast Ewald summation for Green's functions of Stokes flow in a half-space Srinivasan, Shriram PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt591",{id:"formSmash:items:resultList:16:j_idt591",widgetVar:"widget_formSmash_items_resultList_16_j_idt591",onLabel:"Srinivasan, Shriram ",offLabel:"Srinivasan, Shriram ",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); et al. PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt594",{id:"formSmash:items:resultList:16:j_idt594",widgetVar:"widget_formSmash_items_resultList_16_j_idt594",onLabel:"et al.",offLabel:"et al.",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:16:orgPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Tornberg, Anna-KarinKTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.PrimeFaces.cw("Panel","testPanel",{id:"formSmash:items:resultList:16:etAlPanel",widgetVar:"testPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500}); Fast Ewald summation for Green's functions of Stokes flow in a half-space2018In: RESEARCH IN THE MATHEMATICAL SCIENCES, ISSN 2197-9847, Vol. 5, article id 35Article in journal (Refereed)Abstract [en] PrimeFaces.cw("SelectBooleanButton","widget_formSmash_items_resultList_16_j_idt629_0_j_idt630",{id:"formSmash:items:resultList:16:j_idt629:0:j_idt630",widgetVar:"widget_formSmash_items_resultList_16_j_idt629_0_j_idt630",onLabel:"Abstract [en]",offLabel:"Abstract [en]",onIcon:"ui-icon-triangle-1-s",offIcon:"ui-icon-triangle-1-e"}); Recently, Gimbutas et al. (J Fluid Mech, 2015. https://doi.org/10.1017/jfm.2015.302) derived an elegant representation for the Green's functions of Stokes flow in a half-space. We present a fast summation method for sums involving these half-space Green's functions (stokeslets, stresslets and rotlets) that consolidates and builds on the work by Klinteberg et al. (Res Math Sci 4(1): 1, 2017. https://doi.org/10.1186/s40687-016-0092-7) for the corresponding free-space Green's functions. The fast method is based on two main ingredients: The Ewald decomposition and subsequent use of FFTs. The Ewald decomposition recasts the sum into a sum of two exponentially decaying series: one in real space (short-range interactions) and one in Fourier space (long-range interactions) with the convergence of each series controlled by a common parameter. The evaluation of short-range interactions is accelerated by restricting computations to neighbours within a specified distance, while the use of FFTs accelerates the computations in Fourier space thus accelerating the overall sum. We demonstrate that while the method incurs extra costs for the half-space in comparison with the free-space evaluation, greater computational savings is also achieved when compared to their respective direct sums.

PrimeFaces.cw("Panel","tryPanel",{id:"formSmash:items:resultList:16:j_idt629:0:abstractPanel",widgetVar:"tryPanel",toggleable:true,toggleSpeed:500,collapsed:false,toggleOrientation:"vertical",closable:true,closeSpeed:500});

CiteExportLink to result list
http://kth.diva-portal.org/smash/resultList.jsf?query=&language=en&searchType=SIMPLE&noOfRows=50&sortOrder=author_sort_asc&sortOrder2=title_sort_asc&onlyFullText=false&sf=all&aq=%5B%5B%7B%22personId%22%3A%22authority-person%3A39141%22%7D%5D%5D&aqe=%5B%5D&aq2=%5B%5B%5D%5D&af=%5B%5D $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_lower_j_idt911_recordPermLink",{id:"formSmash:lower:j_idt911:recordPermLink",widgetVar:"widget_formSmash_lower_j_idt911_recordPermLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt911_j_idt913",{id:"formSmash:lower:j_idt911:j_idt913",widgetVar:"widget_formSmash_lower_j_idt911_j_idt913",target:"formSmash:lower:j_idt911:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Cite

Citation styleapa ieee modern-language-association-8th-edition vancouver Other style $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt929",{id:"formSmash:lower:j_idt929",widgetVar:"widget_formSmash_lower_j_idt929",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt929",e:"change",f:"formSmash",p:"formSmash:lower:j_idt929",u:"formSmash:lower:otherStyle"},ext);}}});});

- apa
- ieee
- modern-language-association-8th-edition
- vancouver
- Other style

Languagede-DE en-GB en-US fi-FI nn-NO nn-NB sv-SE Other locale $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt940",{id:"formSmash:lower:j_idt940",widgetVar:"widget_formSmash_lower_j_idt940",behaviors:{change:function(ext) {PrimeFaces.ab({s:"formSmash:lower:j_idt940",e:"change",f:"formSmash",p:"formSmash:lower:j_idt940",u:"formSmash:lower:otherLanguage"},ext);}}});});

- de-DE
- en-GB
- en-US
- fi-FI
- nn-NO
- nn-NB
- sv-SE
- Other locale

Output formathtml text asciidoc rtf $(function(){PrimeFaces.cw("SelectOneMenu","widget_formSmash_lower_j_idt950",{id:"formSmash:lower:j_idt950",widgetVar:"widget_formSmash_lower_j_idt950"});});

- html
- text
- asciidoc
- rtf