Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Almeida, Diogo
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH.
    Ambrus, Rares
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Caccamo, Sergio
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Chen, Xi
    KTH.
    Cruciani, Silvia
    Pinto Basto De Carvalho, Joao F
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Haustein, Joshua
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Marzinotto, Alejandro
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Vina, Francisco
    KTH.
    Karayiannidis, Yannis
    KTH.
    Ögren, Petter
    KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Optimization and Systems Theory.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Team KTH’s Picking Solution for the Amazon Picking Challenge 20162017In: Warehouse Picking Automation Workshop 2017: Solutions, Experience, Learnings and Outlook of the Amazon Robotics Challenge, 2017Conference paper (Other (popular science, discussion, etc.))
    Abstract [en]

    In this work we summarize the solution developed by Team KTH for the Amazon Picking Challenge 2016 in Leipzig, Germany. The competition simulated a warehouse automation scenario and it was divided in two tasks: a picking task where a robot picks items from a shelf and places them in a tote and a stowing task which is the inverse task where the robot picks items from a tote and places them in a shelf. We describe our approach to the problem starting from a high level overview of our system and later delving into details of our perception pipeline and our strategy for manipulation and grasping. The solution was implemented using a Baxter robot equipped with additional sensors.

  • 2.
    Ambrus, Rares
    et al.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Bore, Nils
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Autonomous meshing, texturing and recognition of object models with a mobile robot2017In: 2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) / [ed] Bicchi, A Okamura, A, IEEE , 2017, p. 5071-5078Conference paper (Refereed)
    Abstract [en]

    We present a system for creating object models from RGB-D views acquired autonomously by a mobile robot. We create high-quality textured meshes of the objects by approximating the underlying geometry with a Poisson surface. Our system employs two optimization steps, first registering the views spatially based on image features, and second aligning the RGB images to maximize photometric consistency with respect to the reconstructed mesh. We show that the resulting models can be used robustly for recognition by training a Convolutional Neural Network (CNN) on images rendered from the reconstructed meshes. We perform experiments on data collected autonomously by a mobile robot both in controlled and uncontrolled scenarios. We compare quantitatively and qualitatively to previous work to validate our approach.

  • 3.
    Ambrus, Rares
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Bore, Nils
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Autonomous meshing, texturing and recognition of objectmodels with a mobile robot2017Conference paper (Refereed)
    Abstract [en]

    We present a system for creating object modelsfrom RGB-D views acquired autonomously by a mobile robot.We create high-quality textured meshes of the objects byapproximating the underlying geometry with a Poisson surface.Our system employs two optimization steps, first registering theviews spatially based on image features, and second aligningthe RGB images to maximize photometric consistency withrespect to the reconstructed mesh. We show that the resultingmodels can be used robustly for recognition by training aConvolutional Neural Network (CNN) on images rendered fromthe reconstructed meshes. We perform experiments on datacollected autonomously by a mobile robot both in controlledand uncontrolled scenarios. We compare quantitatively andqualitatively to previous work to validate our approach.

  • 4.
    Ambrus, Rares
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Claici, Sebastian
    Wendt, Axel
    Automatic Room Segmentation From Unstructured 3-D Data of Indoor Environments2017In: IEEE Robotics and Automation Letters, ISSN 2377-3766, E-ISSN 1949-3045, Vol. 2, no 2, p. 749-756Article in journal (Refereed)
    Abstract [en]

    We present an automatic approach for the task of reconstructing a 2-D floor plan from unstructured point clouds of building interiors. Our approach emphasizes accurate and robust detection of building structural elements and, unlike previous approaches, does not require prior knowledge of scanning device poses. The reconstruction task is formulated as a multiclass labeling problem that we approach using energy minimization. We use intuitive priors to define the costs for the energy minimization problem and rely on accurate wall and opening detection algorithms to ensure robustness. We provide detailed experimental evaluation results, both qualitative and quantitative, against state-of-the-art methods and labeled ground-truth data.

  • 5.
    Ambrus, Rares
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Unsupervised object segmentation through change detection in a long term autonomy scenario2016In: IEEE-RAS International Conference on Humanoid Robots, IEEE, 2016, p. 1181-1187Conference paper (Refereed)
    Abstract [en]

    In this work we address the problem of dynamic object segmentation in office environments. We make no prior assumptions on what is dynamic and static, and our reasoning is based on change detection between sparse and non-uniform observations of the scene. We model the static part of the environment, and we focus on improving the accuracy and quality of the segmented dynamic objects over long periods of time. We address the issue of adapting the static structure over time and incorporating new elements, for which we train and use a classifier whose output gives an indication of the dynamic nature of the segmented elements. We show that the proposed algorithms improve the accuracy and the rate of detection of dynamic objects by comparing with a labelled dataset.

  • 6.
    Bore, Nils
    et al.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Ambrus, Rares
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Efficient retrieval of arbitrary objects from long-term robot observations2017In: Robotics and Autonomous Systems, ISSN 0921-8890, E-ISSN 1872-793X, Vol. 91, p. 139-150Article in journal (Refereed)
    Abstract [en]

    We present a novel method for efficient querying and retrieval of arbitrarily shaped objects from large amounts of unstructured 3D point cloud data. Our approach first performs a convex segmentation of the data after which local features are extracted and stored in a feature dictionary. We show that the representation allows efficient and reliable querying of the data. To handle arbitrarily shaped objects, we propose a scheme which allows incremental matching of segments based on similarity to the query object. Further, we adjust the feature metric based on the quality of the query results to improve results in a second round of querying. We perform extensive qualitative and quantitative experiments on two datasets for both segmentation and retrieval, validating the results using ground truth data. Comparison with other state of the art methods further enforces the validity of the proposed method. Finally, we also investigate how the density and distribution of the local features within the point clouds influence the quality of the results.

  • 7.
    Brucker, Manuel
    et al.
    German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany..
    Durner, Maximilian
    German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany..
    Ambrus, Rares
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.
    Marton, Zoltan Csaba
    German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany..
    Wendt, Axel
    Robert Bosch, Corp Res, St Joseph, MI USA.;Robert Bosch, Corp Res, Gerlingen, Germany..
    Jensfelt, Patric
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.
    Arras, Kai O.
    Robert Bosch, Corp Res, St Joseph, MI USA.;Robert Bosch, Corp Res, Gerlingen, Germany..
    Triebel, Rudolph
    German Aerosp Ctr DLR, Inst Robot & Mechatron, D-82234 Oberpfaffenhofen, Germany.;Tech Univ Munich, Dep Comp Sci, Munich, Germany..
    Semantic Labeling of Indoor Environments from 3D RGB Maps2018In: 2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), IEEE Computer Society, 2018, p. 1871-1878Conference paper (Refereed)
    Abstract [en]

    We present an approach to automatically assign semantic labels to rooms reconstructed from 3D RGB maps of apartments. Evidence for the room types is generated using state-of-the-art deep-learning techniques for scene classification and object detection based on automatically generated virtual RGB views, as well as from a geometric analysis of the map's 3D structure. The evidence is merged in a conditional random field, using statistics mined from different datasets of indoor environments. We evaluate our approach qualitatively and quantitatively and compare it to related methods.

  • 8. Hawes, N
    et al.
    Ambrus, Rares
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Bore, Nils
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Folkesson, John
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Hanheide, Marc
    et al.,
    The STRANDS Project Long-Term Autonomy in Everyday Environments2017In: IEEE robotics & automation magazine, ISSN 1070-9932, E-ISSN 1558-223X, Vol. 24, no 3, p. 146-156Article in journal (Refereed)
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf