Change search
Refine search result
1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alm, Tove
    KTH, School of Biotechnology (BIO), Proteomics.
    Interaction engineered three-helix bundle domains for protein recovery and detection2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    HTML clipboard The great advances in DNA technology, e.g. sequencing and recombinant DNA techniques, have given us the genetic information and the tools needed to effectively produce recombinant proteins. Recombinant proteins are valuable means in biotechnological applications and are also emerging as alternatives in therapeutic applications. Traditionally, monoclonal antibodies have been the natural choice for biotechnological and therapeutic applications due to their ability to bind a huge range of different molecules and their natural good affinity. However, the large size of antibodies (150 kDa) limits tissue penetration and the recombinant expression is complicated. Therefore, alternative binders with smaller sizes have been derived from antibodies and alternative scaffolds.

    In this thesis, two structurally similar domains, Zbasic and ABDz1, have been used as purification tags in different contexts. They are both three-helical bundles and derived from bacterial surface domains, but share no sequence homology. Furthermore, by redesign of the scaffold used for ABDz1, a molecule intended for drug targeting with extended in-vivo half-life has been engineered. In Papers I and II, the poly-cationic tag Zbasic is explored and evaluated. Paper I describes the successful investigation of Zbasic as a purification handle under denaturating conditions. Moreover, Zbasic is evaluated as an interaction domain in matrixassisted refolding. Two different proteins were successfully refolded using the same setup without individual optimization. In Paper II, Zbasic is further explored as a purification handle under non-native conditions in a multi-parallel setup. In total, 22 proteins with varying characteristics are successfully purified using a multi-parallel protein purification protocol and a robotic system. Without modifications, the system can purify up to 60 proteins without manual handling. Paper I and II clearly demonstrate that Zbasic can be used as an interaction domain in matrix-assisted refolding and that it offers a good alternative to the commonly used His6-tag under denaturating conditions. In paper III, the small bifunctional ABDz1 is selected from a phage display library. Endowed with two different binding interfaces, ABDz1 is capable of binding both the HSA-sepharose and the protein A-derived MabSelect SuRe-matrix. The bifunctionality of the domain is exploited in an orthogonal affinity setup. Three target proteins are successfully purified using the HSA-matrix and the MabSelect SuRe-matrix. Furthermore, the purity of the target proteins is effectively improved by combining the two chromatographic steps. Thus, paper III shows that the small ABDz1 can be used as an effective purification handle and dual affinity tag without target specific optimization. Paper IV describes the selection and affinity maturation of small bispecific drug-targeting molecules. First generation binders against tumor necrosis factor-α are selected using phage display. Thereafter on-cell surface display and flow cytometry is used to select second-generation binders. The binding to tumor necrosis factor-α is improved up to 30 times as compared to the best first generation binder, and a 6-fold improvement of the binding strength was possible with retained HSA affinity. Paper III and IV clearly demonstrate that dual interaction surfaces can successfully be grafted on a small proteinaceous domain, and that the strategy in paper IV can be used for dual selection of bifunctional binders.

  • 2.
    Alm, Tove L.
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    The Affinity Binder Knockdown Initiative.2016In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 27Article in journal (Refereed)
  • 3.
    Alm, Tove L.
    et al.
    KTH, School of Biotechnology (BIO).
    Lundberg, Emma
    KTH, School of Biotechnology (BIO).
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO).
    The Affinity Binder Knockdown Initiative2015In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 26Article in journal (Other academic)
  • 4.
    Alm, Tove L.
    et al.
    KTH, School of Biotechnology (BIO).
    von Feilitzen, Kalle
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO).
    Antibodypedia - The wiki of antibodies2015In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 26Article in journal (Other academic)
  • 5.
    Alm, Tove L.
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    von Feilitzen, Kalle
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    ANTIBODYPEDIA: THE WIKI OF ANTIBODIES2016In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 27Article in journal (Refereed)
  • 6.
    Alm, Tove
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Introducing the Affinity Binder Knockdown Initiative-A public-private partnership for validation of affinity reagents2016In: EuPA Open Proteomics, ISSN 0014-2328, E-ISSN 2212-9685, Vol. 10, p. 56-58Article in journal (Refereed)
    Abstract [en]

    The newly launched Affinity Binder Knockdown Initiative encourages antibody suppliers and users to join this public-private partnership, which uses crowdsourcing to collect characterization data on antibodies. Researchers are asked to share validation data from experiments where gene-editing techniques (such as siRNA or CRISPR) have been used to verify antibody binding. The initiative is launched under the aegis of Antibodypedia, a database designed to allow comparisons and scoring of publicly available antibodies towards human protein targets. What is known about an antibody is the foundation of the scoring and ranking system in Antibodypedia.

  • 7.
    Alm, Tove
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Nilvebrant, Johan
    KTH, School of Biotechnology (BIO), Proteomics.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    Löfblom, John
    KTH, School of Biotechnology (BIO), Proteomics.
    Engineering bispecificityinto a single albumin-binding domain aimed for drug-targeting and extended in vivo half-life extension.Manuscript (preprint) (Other academic)
  • 8.
    Alm, Tove
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Steen, Johanna
    KTH, School of Biotechnology (BIO), Proteomics.
    Ottosson, Jenny
    KTH, School of Biotechnology (BIO), Proteomics.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    High-throughput protein purification under denaturating conditions by the use of cation exchange chromatography2007In: Biotechnology Journal, ISSN 1860-6768, Vol. 2, p. 709-716Article in journal (Refereed)
    Abstract [en]

    A high-throughput protein purification strategy using the polycationic Z(basic) tag has been developed. In order for the strategy to be useful both for soluble and less soluble proteins, a denaturating agent, urea, was used in all purification steps. First, four target proteins were genetically fused to the purification tag, Z(basic). These protein constructs were purified by cation exchange chromatography and eluted using a salt gradient. From the data achieved, a purification strategy was planned including stepwise elution to enable parallel protein purification using a laboratory robot. A protocol that includes all steps, equilibration of the chromatography resin, load of sample, wash, and elution, all without any manual handling steps, was handled by the laboratory robot. The program allows automated purification giving milligram amounts of pure recombinant protein of up to 60 cell lysates. In this study 22 different protein constructs, with different characteristics regarding pI and solubility, were successfully purified by the laboratory robot. The data show that Z(basic) can be used as a general purification tag also under denaturating conditions. Moreover, the strategy enables purification of proteins with different pI and solubility using ion exchange chromatography (IEXC). The procedure is highly reproducible and allows for high protein yield and purity and is therefore a good complement to the commonly used His(6)-tag.

  • 9.
    Alm, Tove
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    von Feilitzen, Kalle
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sivertsson, Åsa
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    A Chromosome-Centric Analysis of Antibodies Directed toward the Human Proteome Using Antibodypedia2014In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 13, no 3, p. 1669-1676Article in journal (Refereed)
    Abstract [en]

    Antibodies are crucial for the study of human proteins and have been defined as one of the three pillars in the human chromosome-centric Human Proteome Project (CHPP). In this article the chromosome-centric structure has been used to analyze the availability of antibodies as judged by the presence within the portal Antibodypedia, a database designed to allow comparisons and scoring of publicly available antibodies toward human protein targets. This public database displays antibody data from more than one million antibodies toward human protein targets. A summary of the content in this knowledge resource reveals that there exist more than 10 antibodies to over 70% of all the putative human genes, evenly distributed over the 24 human chromosomes. The analysis also shows that at present, less than 10% of the putative human protein-coding genes (n = 1882) predicted from the genome sequence lack antibodies, suggesting that focused efforts from the antibody-based and mass spectrometry-based proteomic communities should be encouraged to pursue the analysis of these missing proteins. We show that Antibodypedia may be used to track the development of available and validated antibodies to the individual chromosomes, and thus the database is an attractive tool to identify proteins with no or few antibodies yet generated.

  • 10.
    Alm, Tove
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Yderland, Louise
    KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Nilvebrant, Johan
    KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Halldin, Anneli
    KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    A small bispecific protein selected for orthogonal affinity purification2010In: BIOTECHNOL J, ISSN 1860-6768, Vol. 5, no 6, p. 605-617Article in journal (Refereed)
    Abstract [en]

    A novel protein domain with dual affinity has been created by randomization and selection. The small alkali-stabilized albumin-binding domain (ABD(star)), used as scaffold to construct the library, has affinity to human serum albumin (HSA) and is constituted of 46 amino acids of which 11 were randomized. To achieve a dual binder, the binding site of the inherent HSA affinity was untouched and the randomization was made on the opposite side of the molecule. Despite its small size and randomization of almost a quarter of its amino acids, a bifunctional molecule, ABDz1, with ability to bind to both HSA and the Z(2) domain/protein A was successfully selected using phage display. Moreover, the newly selected variant showed improved affinity for HSA compared to the parental molecule. This novel protein domain has been characterized regarding secondary structure and affinity to the two different ligands. The possibility for affinity purification on two different matrices has been investigated using the two ligands, the HSA matrix and the protein A-based, MabSelect SuRe matrix, and the new protein domain was purified to homogeneity. Furthermore, gene fusions between the new domain and three different target proteins with different characteristics were made. To take advantage of both affinities, a purification strategy referred to as orthogonal affinity purification using two different matrices was created. Successful purification of all three versions was efficiently carried out using this strategy.

  • 11. Bjork, L.
    et al.
    Ait Blal, C.
    Alm, Tove L.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Bäckström, Anna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Gnann, C.
    Hjelmare, Martin
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schutten, Rutger
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Stadler, Charlotte
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Application specific antibody validation. The Human Protein Atlas validation scheme and how to confirm subcellular protein localization.2016In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 27Article in journal (Refereed)
  • 12.
    Edfors, Fredrik
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Linderbäck, Klas
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fagerberg, Linn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Alm, Tove
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Forsström, Björn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Technical University of Denmark, Denmark.
    Validation of antibodies for Western blot applications using orthogonal methodsManuscript (preprint) (Other academic)
    Abstract [en]

    There is a great need for standardized validation methods for antibody specificity and selectivity. Here, we describe the use of orthogonal methods in which the specificity of an antibody in a particular application is determined based on correlation of protein abundance across several samples using an antibody-independent method. We show that pair-wise correlation between orthogonal samples can be used to score the specificity of antibodies in a standardized manner using a test panel of human cell lines. Here, we investigated two independent methods for validation of antibodies in Western blot applications, namely transcriptomics and targeted proteomics and we show that the two methods yield similar, but not identical results. The orthogonal methods can also be used to investigate on- and off- target binding for antibodies with multiple bands in the Western blot assay. In conclusion, orthogonal methods for antibody validation provide an attractive strategy for systematic validation of antibodies in a quantitative manner. 

  • 13.
    Hedhammar, My
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Alm, Tove
    KTH, School of Biotechnology (BIO), Proteomics.
    Gräslund, Torbjörn
    KTH, School of Biotechnology (BIO), Proteomics.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    Single-step recovery and solid-phase refolding of inclusion body proteins using a polycationic purification tag2006In: Biotechnology Journal, ISSN 1860-6768, Vol. 1, p. 187-196Article in journal (Refereed)
    Abstract [en]

    A strategy for purification of inclusion body-forming proteins is described, in which the positively charged domain Z(basic) is used as a fusion partner for capture of denatured proteins on a cation exchange column. It is shown that the purification tag is selective under denaturing conditions. Furthermore, the new strategy for purification of proteins from inclusion bodies is compared with the commonly used method for purification of His(6)-tagged inclusion body proteins. Finally, the simple and effective means of target protein capture provided by the Z(basic) tag is further successfully explored for solid-phase refolding. This procedure has the inherited advantage of combining purification and refolding in one step and offers the advantage of eluting the concentrated product in a suitable buffer.

  • 14.
    Nilvebrant, Johan
    et al.
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Alm, Tove
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Orthogonal protein purification facilitated by a small bispecific affinity tag2012In: Journal of Visualized Experiments, ISSN 1940-087X, no 59, p. 1-5Article in journal (Refereed)
    Abstract [en]

    Due to the high costs associated with purification of recombinant proteins the protocols need to be rationalized. For high-throughput efforts there is a demand for general methods that do not require target protein specific optimization. To achieve this, purification tags that genetically can be fused to the gene of interest are commonly used. The most widely used affinity handle is the hexa-histidine tag, which is suitable for purification under both native and denaturing conditions. The metabolic burden for producing the tag is low, but it does not provide as high specificity as competing affinity chromatography based strategies. Here, a bispecific purification tag with two different binding sites on a 46 amino acid, small protein domain has been developed. The albumin-binding domain is derived from Streptococcal protein G and has a strong inherent affinity to human serum albumin (HSA). Eleven surface-exposed amino acids, not involved in albumin-binding, were genetically randomized to produce a combinatorial library. The protein library with the novel randomly arranged binding surface (Figure 1) was expressed on phage particles to facilitate selection of binders by phage display technology. Through several rounds of biopanning against a dimeric Z-domain derived from Staphylococcal protein A, a small, bispecific molecule with affinity for both HSA and the novel target was identified. The novel protein domain, referred to as ABDz1, was evaluated as a purification tag for a selection of target proteins with different molecular weight, solubility and isoelectric point. Three target proteins were expressed in Escherishia coli with the novel tag fused to their N-termini and thereafter affinity purified. Initial purification on either a column with immobilized HSA or Z-domain resulted in relatively pure products. Two-step affinity purification with the bispecific tag resulted in substantial improvement of protein purity. Chromatographic media with the Z-domain immobilized, for example MabSelect SuRe, are readily available for purification of antibodies and HSA can easily be chemically coupled to media to provide the second matrix. This method is especially advantageous when there is a high demand on purity of the recovered target protein. The bifunctionality of the tag allows two different chromatographic steps to be used while the metabolic burden on the expression host is limited due to the small size of the tag. It provides a competitive alternative to so called combinatorial tagging where multiple tags are used in combination.

  • 15.
    Nilvebrant, Johan
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Alm, Tove
    KTH, School of Biotechnology (BIO), Proteomics.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    Lofblom, John
    KTH, School of Biotechnology (BIO), Molecular Biotechnology.
    Engineering Bispecificity into a Single Albumin-Binding Domain2011In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 6, no 10, p. e25791-Article in journal (Refereed)
    Abstract [en]

    Bispecific antibodies as well as non-immunoglobulin based bispecific affinity proteins are considered to have a very high potential in future biotherapeutic applications. In this study, we report on a novel approach for generation of extremely small bispecific proteins comprised of only a single structural domain. Binding to tumor necrosis factor-alpha (TNF-alpha) was engineered into an albumin-binding domain while still retaining the original affinity for albumin, resulting in a bispecific protein composed of merely 46 amino acids. By diversification of the non albumin-binding side of the three-helix bundle domain, followed by display of the resulting library on phage particles, bispecific single-domain proteins were isolated using selections with TNF-alpha as target. Moreover, based on the obtained sequences from the phage selection, a second-generation library was designed in order to further increase the affinity of the bispecific candidates. Staphylococcal surface display was employed for the affinity maturation, enabling efficient isolation of improved binders as well as multiparameter-based sortings with both TNF-alpha and albumin as targets in the same selection cycle. Isolated variants were sequenced and the binding to albumin and TNF-alpha was analyzed. This analysis revealed an affinity for TNF-alpha below 5 nM for the strongest binders. From the multiparameter sorting that simultaneously targeted TNF-alpha and albumin, several bispecific candidates were isolated with high affinity to both antigens, suggesting that cell display in combination with fluorescence activated cell sorting is a suitable technology for engineering of bispecificity. To our knowledge, the new binders represent the smallest engineered bispecific proteins reported so far. Possibilities and challenges as well as potential future applications of this novel strategy are discussed.

  • 16.
    Thul, Peter J.
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Åkesson, Lovisa
    KTH, School of Biotechnology (BIO). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Wiking, Mikaela
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mahdessian, Diana
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Geladaki, A.
    Ait Blal, Hammou
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Alm, Tove L.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Asplund, A.
    Björk, Lars
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Breckels, L. M.
    Bäckström, Anna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fagerberg, Linn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fall, Jenny
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Gatto, L.
    Gnann, Christian
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Protein Technology.
    Hjelmare, Martin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Johansson, Fredric
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lee, Sunjae
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lindskog, C.
    Mulder, J.
    Mulvey, C. M.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Oksvold, Per
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Rockberg, Johan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Schutten, Rutger
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sjöstedt, E.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Stadler, Charlotte
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sullivan, Devin P.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Winsnes, Casper F.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zhang, Cheng
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zwahlen, Martin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mardinoglu, Adil
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pontén, F.
    von Feilitzen, Kalle
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lilley, K. S.
    Uhlén, Mathias
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    A subcellular map of the human proteome2017In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 356, no 6340, article id 820Article in journal (Refereed)
    Abstract [en]

    Resolving the spatial distribution of the human proteome at a subcellular level can greatly increase our understanding of human biology and disease. Here we present a comprehensive image-based map of subcellular protein distribution, the Cell Atlas, built by integrating transcriptomics and antibody-based immunofluorescence microscopy with validation by mass spectrometry. Mapping the in situ localization of 12,003 human proteins at a single-cell level to 30 subcellular structures enabled the definition of the proteomes of 13 major organelles. Exploration of the proteomes revealed single-cell variations in abundance or spatial distribution and localization of about half of the proteins to multiple compartments. This subcellular map can be used to refine existing protein-protein interaction networks and provides an important resource to deconvolute the highly complex architecture of the human cell.

  • 17.
    Uhlén, Mathias
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Fagerberg, Linn
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hallström, Björn M
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lindskog, Cecilia
    Oksvold, Per
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mardinoglu, Adil
    Sivertsson, Åsa
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kampf, Caroline
    Sjöstedt, Evelina
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Asplund, Anna
    Olsson, IngMarie
    Edlund, Karolina
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Navani, Sanjay
    Szigyarto, Cristina Al-Khalili
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Odeberg, Jacob
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Djureinovic, Dijana
    Takanen, Jenny Ottosson
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Alm, Tove
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Edqvist, Per-Henrik
    Berling, Holger
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Mulder, Jan
    Rockberg, Johan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Nilsson, Peter
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hamsten, Marica
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    von Feilitzen, Kalle
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Forsberg, Mattias
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Persson, Lukas
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Johansson, Fredric
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zwahlen, Martin
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    von Heijne, Gunnar
    Nielsen, Jens
    Pontén, Fredrik
    Tissue-based map of the human proteome2015In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 347, no 6220, p. 1260419-Article in journal (Refereed)
    Abstract [en]

    Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.

1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf