Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ammenberg, Jonas
    et al.
    Linköping University.
    Anderberg, Stefan
    Linköping University.
    Lönnqvist, Tomas
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Energy Processes.
    Grönkvist, Stefan
    KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Energy Processes.
    Sandberg, Thomas
    KTH, School of Industrial Engineering and Management (ITM), Industrial Economics and Management (Dept.).
    Biogas in the transport sector - a regional actor and policy analysis focusing on the demand sideManuscript (preprint) (Other academic)
  • 2.
    Lönnqvist, Tomas
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Sandberg, Thomas
    KTH, School of Industrial Engineering and Management (ITM), Industrial Economics and Management (Dept.).
    Birbue, Juan Cristóbal
    Olsson, Jesper
    Espinosa, Cecilia
    Thorin, Eva
    Grönkvist, Stefan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Energy Processes.
    Gómez, María F.
    Large-scale biogas generation in Bolivia – a stepwise reconfiguration2018In: Journal of Cleaner Production, ISSN 0959-6526, E-ISSN 1879-1786, Vol. 180, p. 494-504Article in journal (Refereed)
    Abstract [en]

    Renewable energy is well recognized not only as resource that helps to protect the environment for future generations but also as a driver for development. Waste-to-energy systems can provide renewable energy and also improve sustainability in waste management. This article contributes a case study of stepwise reconfiguration of the waste management system in a developing country to the literature of transitions. The conditions for a systemic transition that integrates large-scale biogas generation into the waste management system have been analyzed. The method included a multi-criteria evaluation of three development steps for biogas, an economic analysis, and an institutional and organizational analysis. The results revealed economic as well as institutional and organizational barriers. Clearly, public and private sectors need to engage in sustainability. There is also a lack of pressure – mainly because of fossil fuel subsidies – that prevents a transition and creates a lock-in effect. To break the lock-in effect the municipality's institutional capacity should be strengthened. It is possible to strengthen biogas economically by integrated waste management services and sales of biofertilizer. A stepwise reconfiguration would be initiated by adopting technologies that are already established in many developed countries but are novelties in a Bolivian context – as a response to sustainability challenges related to waste management. The article focuses on the main challenges and the potential for biogas technology in Bolivia and a pathway towards a new, more sustainable system is suggested.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf