Change search
Refine search result
1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Benselfelt, Tobias
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Engström, Joakim
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Supramolecular double networks of cellulose nanofibrils and algal polysaccharides with excellent wet mechanical properties2018In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 20, no 11, p. 2558-2570Article in journal (Refereed)
    Abstract [en]

    Supramolecular double network films, consisting of cellulose nanofibrils (CNF) entangled with the algal polysaccharides alginate or carrageenan, were prepared using a rapid vacuum filtration process to achieve water-resistant CNF nanopapers with excellent mechanical properties in both the wet and dry states following the locking of the structures using Ca2+. The rigid network of calcium alginate was more efficient than the more flexible network of calcium carrageenan and 10% by weight of alginate was sufficient to form a network that suppressed the swelling of the CNF film by over 95%. The resulting material could be compared to a stiff rubber with a Young's modulus of 135 MPa, a tensile strength of 17 MPa, a strain-at-break above 55%, and a work of fracture close to 5 MJ m(-3) in the wet state, which was both significantly stronger and more ductile than the calcium-treated CNF reference nanopaper. It was shown that the state in which Ca2+ was introduced is crucial, and it is also hypothesized that the alginate works as a sacrificial network that prevents the CNF from aligning during loading and that this leads to the increased toughness. The material maintained its barrier properties at elevated relative humidities and the extensibility and ductility made possible hygroplastic forming into three-dimensional shapes. It is suggested that the attractive force in the CNF part of the double network in the presence of multivalent ions is due to the ion-ion correlation forces generated by the fluctuating counter-ion cloud, since no significant ion coordination was observed using FTIR.

  • 2.
    Engström, Joakim
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Tailored adhesion of PISA-latexes for cellulose modification and new materials2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis is focused on applying modification chemistry to already known cellulosic substrates from wood (i.e. cellulose nanofibrils, CNFs, and cellulose nanocrystals, CNCs). The modification is needed to overcome the drawbacks with the nanocellulosics alone, such as sensitivity to water (hydrophilicity) and the brittle material properties (however great stiffness). The first aim is to incorporate nanocellulosics into hydrophobic degradable materials of poly(ε-caprolactone) (PCL), resulting in aggregation if not modified. The challenge is to reach high fraction of nanocellulosics, whilst maintaining the flexibility of PCL and improving the properties of the resulting nanocomposite with the corresponding stiffness of the nanocellulosics. The second aim is to increase toughness and strain-at-break for nanocomposite materials of CNF-networks, to increase the plastic deformation equivalent of fossil-based polymeric materials such as polypropylene (PP). Aiming to achieve these goals, the thesis also includes new synthetic strategies of tailored-made set of block copolymers as modifying components. The modifying components, were synthesised by surfactant-free emulsion polymerisation and polymerisation induced self-assembly (PISA), so called PISA-latexes.

    Two types of cationic polyelectrolytes, (poly(2-dimethylaminoethy methacrylate) (PDMAEMA) and poly(N-[3-(dimethylamino)propyl] methacrylamide (PDMAPMA)), being the corona of the latex, were synthesised. Followed by chain-extension with different hydrophobic monomers such as methyl methacrylate and butyl methacrylate, making up the core polymer of the resulting PISA-latex. The cationic PISA-latexes show narrow size distributions and the glass transition (Tg) of the core polymer can be varied between -40 °C to 150 °C. The PISA-latexes show strong adhesion to silica and cellulose surfaces as assessed by quartz crystal microbalance (QCM-D). Results also indicate that latexes with Tg below room temperature, considered soft, behave different in the wet state than latexes with Tg above room temperature, considered rigid. The softer latexes form clusters (visualised by imaging with microscopy and atomic force measurements (AFM)) and undergo film formation in the wet state. The latter, shown by colloidal probe measurements using AFM resulting in very large work of adhesion and pull-off forces.

    The PISA-latexes compatibilize CNCs and different CNFs with PCL as a matrix polymer, observed by a small increase in stiffness for the final nanocomposites, however not at a level expected by rule-of-mixtures. The promising wet feeding technique results in large increase in stiffness but maintain PCL’s flexibility, above 200% strain-at-break, which is rarely observed for CNF-reinforced nanocomposites. The, in this case, rigid latex facilitate the dispersion of CNFs in the matrix without aggregation, until finally coalescing after processing and possibly giving rise to improved adhesion between CNF and the latex in the matrix, indicated by rheology measurements. Lastly, new nanocomposite films consisting of 75wt% CNF and 25wt% of PISA-latexes were produced and evaluated. The results show that CNF and rigid 100 nm sized PISA-latex, with PMMA core, gives a very tough double network, with strain-at-break above 28%, stiffness of 3.5 GPa and a strength of 110 MPa. These are impressive properties compared to commonly used fossil-based plastic materials.

    The full text will be freely available from 2020-02-01 15:00
  • 3.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Asem, Heba
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Brismar, Hjalmar
    KTH, Superseded Departments (pre-2005), Physics. KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences (SCI), Applied Physics.
    Zhang, Yuning
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Malkoch, Michael
    KTH, Superseded Departments (pre-2005), Fibre and Polymer Technology. KTH, Superseded Departments (pre-2005), Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Malmström, Eva
    KTH, Superseded Departments (pre-2005), Fibre and Polymer Technology.
    In situ encapsulation of Nile red or Doxorubicinduring RAFT‐mediated emulsion polymerizationvia PISAManuscript (preprint) (Other academic)
  • 4.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Benselfelt, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    D'Agosto, Franck
    UCBL, CPE Lyon, CPE, C2P2,CNRS, Bat 308F, Villeurbanne, France..
    Lansalot, Muriel
    UCBL, CPE Lyon, CPE, C2P2,CNRS, Bat 308F, Villeurbanne, France..
    Carlmark, Anna
    RISE, Nanocellulose, Stockholm, Sweden..
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Tailored cationic PISA-latexes for strong adhesion to anionic surfaces: Importance of purity and chain-extension as shown by adsorption2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 5.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Benselfelt, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    D'Agosto, Franck
    Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), LCPP, 69616 Villeurbanne, France .
    Lansalot, Muriel
    Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), LCPP, 69616 Villeurbanne, France .
    Carlmark, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. RISE.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Tailoring adhesion of anionic surfaces using cationic PISA-latexes – towards tough nanocellulose materials in the wet state2019In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, p. 4287-4302Article in journal (Refereed)
    Abstract [en]

    Cationic latexes with Tgs ranging between −40 °C and 120 °C were synthesised using n-butyl acrylate (BA) and/or methyl methacrylate (MMA) as the core polymers. Reversible addition–fragmentation chain transfer (RAFT) combined with polymerisation-induced self-assembly (PISA) allowed for in situ chain-extension of a cationic macromolecular RAFT agent (macroRAFT) of poly(N-[3-(dimethylamino)propyl] methacrylamide) (PDMAPMA), used as stabiliser in so-called surfactant-free emulsion polymerisation. The resulting narrowly distributed nanosized latexes adsorbed readily onto silica surfaces and to model surfaces of cellulose nanofibrils, as demonstrated by quartz crystal microbalance with dissipation monitoring (QCM-D) measurements. Adsorption to anionic surfaces increased when increasing ionic strength to 10 mM, indicating the influence of the polyelectrolyte effect exerted by the corona. The polyelectrolyte corona affected the interactions in the wet state, the stability of the latex and re-dispersibility after drying. The QCM-D measurements showed that a lower Tg of the core results in a more strongly interacting adsorbed layer at the solid–liquid interface, despite a comparable adsorbed mass, indicating structural differences of the investigated latexes in the wet state. The two latexes with Tg below room temperature (i.e. PBATg-40 and P(BA-co-MMA)Tg3) exhibited film formation in the wet state, as shown by AFM colloidal probe measurements. It was observed that P(BA-co-MMA)Tg3 latex resulted in the largest pull-off force, above 200 m Nm−1 after 120 s in contact. The strongest wet adhesion was achieved with PDMAPMA-stabilized latexes soft enough to allow for interparticle diffusion of polymer chains, and stiff enough to create a strong adhesive joint. Fundamental understanding of interfacial properties of latexes and cellulose enables controlled and predictive strategies to produce strong and tough materials with high nanocellulose content, both in the wet and dry state.

  • 6.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Brett, Calvin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Film formation of soft and rigid PISA‐latexes –analysis of thin films using GISAXSManuscript (preprint) (Other academic)
  • 7.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Hatton, Fiona
    Loughborough Univ, Dept Mat, Loughborough, Leics, England..
    Benselfelt, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Freire, Carmen
    Univ Aveiro, Aveiro Inst Mat, Aveiro, Portugal..
    Vilela, Carla
    Univ Aveiro, Aveiro Inst Mat, Aveiro, Portugal..
    Boujemaoui, Assya
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Sanchez, Carmen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Lo Re, Giada
    Chalmers Univ Technol, Gothenburg, Sweden..
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    D'Agosto, Franck
    UCBL, CPE Lyon, C2P2, CNRS,CPE, Bat 308F, Villeurbanne, France..
    Lansalot, Muriel
    UCBL, CPE Lyon, C2P2, CNRS,CPE, Bat 308F, Villeurbanne, France..
    Carlmark, Anna
    RISE, Stockholm, Sweden..
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Tailored PISA-latexes for modification of nanocellulosics: Investigating compatibilizing and plasticizing effects2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 8.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hatton, Fiona
    Univ Sheffield, Dept Chem, Sheffield, S Yorkshire, England..
    Boujemaoui, Assya
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Sanchez, Carmen Cobo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    D'Agosto, Franck
    C2P2 CNRS CPE UCBL, CPE Lyon, Bat 308F, Villeurbanne, France..
    Lansalot, Muriel
    C2P2 CNRS CPE UCBL, CPE Lyon, Bat 308F, Villeurbanne, France..
    Fogelstrom, Linda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Carlmark, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. RISE Res Inst Sweden Div Bioecon, Nanocellulose, Stockholm, Sweden..
    Tailored nano-latexes for modification of nanocelluloses: Compatibilizing and plasticizing effects2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 9.
    Engström, Joakim
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Hatton, Fiona
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    DAgosto, Franck
    UCBL, CPE, CNRS, C2P2, CPE Lyon Bat 308F, Villeurbanne, France..
    Lansalot, Muriel
    UCBL, CPE, CNRS, C2P2, CPE Lyon Bat 308F, Villeurbanne, France..
    Malmström, Eva
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Carlmark, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Surface modification of cellulose substrates by tailored latex nanoparticles for improvement of interfacial adhesion2016In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 251Article in journal (Other academic)
  • 10.
    Engström, Joakim
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Hatton, Fiona
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Wågberg, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    D'Agosto, F.
    Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), Team LCPP Bat 308F, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France .
    Lansalot, M.
    Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers & Processes), Team LCPP Bat 308F, 43 Bd du 11 Novembre 1918, 69616 Villeurbanne, France .
    Malmström, Eva
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Carlmark, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Soft and rigid core latex nanoparticles prepared by RAFT-mediated surfactant-free emulsion polymerization for cellulose modification-a comparative study2017In: Polymer Chemistry, ISSN 1759-9954, E-ISSN 1759-9962, Vol. 8, no 6, p. 1061-1073Article in journal (Refereed)
    Abstract [en]

    Latex nanoparticles comprising cationically charged coronas and hydrophobic cores with different glass transition temperatures (Tg) have been prepared by surfactant-free, RAFT-mediated emulsion polymerization, where the particles form through a polymerization-induced self-assembly (PISA) type mechanism. Poly(2-dimethylaminoethyl methacrylate-co-methacrylic acid) (P(DMAEMA-co-MAA)) was utilized as a hydrophilic macroRAFT agent for the polymerization of methyl methacrylate (MMA) or n-butyl methacrylate (nBMA), respectively, resulting in two different latexes, with either a core of high (PMMA) or low (PnBMA) Tg polymer. By varying the molar mass of the hydrophobic block, latexes of different sizes were obtained (DHca. 40-120 nm). The adsorption of the latexes to cellulose model surfaces and cellulose nanofibrils (CNF) was studied using quartz crystal microbalance with dissipation monitoring (QCM-D). The surfaces with adsorbed PnBMA latexes yielded hydrophobic surfaces both before and after annealing, whereas surfaces with adsorbed PMMA latex became hydrophobic only after annealing, clearly showing the influence of the Tg of the core. The latexes were also used to modify macroscopic cellulose in the form of filter papers. Similar to the CNF surfaces, no annealing was required to achieve hydrophobic surfaces with PnBMA latexes. Finally, nanocomposites of CNF and the polymer nanoparticles were prepared through a one-pot mixing procedure. It was found that the largest synthesized PMMA latex (120 nm) facilitated a more strainable CNF network at 50% relative humidity, with a nearly 200% increase in strain at break compared to the neat CNF reference film as well as to the composite films with PnBMA latexes or to the smaller sized PMMA latexes. This difference was attributed to the spherical shape and rigidity of the large PMMA latex nanoparticles during composite formation. This highly interesting result should indeed be considered in the future design of novel biocomposites.

  • 11.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Jimenez, Andrew
    Columbia University.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Kumar, Sanat
    Columbia University.
    Nanoparticle Rearrangement Under Stress inCellulose Nanofibrils Networks using in situ SAXSMeasurements During Tensile TestingManuscript (preprint) (Other academic)
  • 12.
    Engström, Joakim
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Stamm, Arne
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Tengdelius, Mattias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Syrén, Per-Olof
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Fogelström, Linda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Cationic latexes of bio‐based hydrophobicmonomer Sobrerol methacrylate (SobMA)Manuscript (preprint) (Other academic)
  • 13.
    Gicquel, Erwan
    et al.
    Grenoble INP Pagora CNRS, St Martin Dheres, France..
    Jean, Bruno
    CERMAV, St Martin Dheres, France..
    Engström, Joakim
    KTH.
    Martin, Celine
    Grenoble INP Pagora CNRS, St Martin Dheres, France..
    Carlmark, Anna
    KTH.
    Bras, Julien
    Grenoble INP Pagora CNRS, St Martin Dheres, France..
    Rheological behavior of thermosensitive hydrogel suspensions based on Cellulose Nanocrystals with adsorbed thermo-responsive polymer2017In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Article in journal (Other academic)
  • 14.
    Gicquel, Erwan
    et al.
    Univ Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France..
    Martin, Caine
    Univ Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France..
    Gauthier, Quentin
    Univ Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France..
    Engström, Joakim
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Abbattista, Clara
    Univ Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France..
    Carlmark, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Cranston, Emily D.
    Univ British Columbia, Dept Chem & Biol Engn, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.;Univ British Columbia, Dept Wood Sci, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada..
    Jean, Bruno
    Univ Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France..
    Bras, Julien
    Univ Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France.;Inst Univ France, F-75000 Paris, France..
    Tailoring Rheological Properties of Thermoresponsive Hydrogels through Block Copolymer Adsorption to Cellulose Nanocrystals2019In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, no 7, p. 2545-2556Article in journal (Refereed)
    Abstract [en]

    This study investigates the adsorption of a block copolymer composed of a poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) cationic polyelectrolyte and a poly(di(ethylene glycol) methyl ethermethacrylate) (PDEGMA) on oxidized cellulose nanocrystals (TO-CNCs) to produce hydrogels. PDMEAMA-b-PDEGMA was synthesized by atom-transfer radical polymerization. The extent and dynamics of the adsorption of PDMAEMA-b-PDEGMA on TO-CNCs were determined by electromechanical microbalance and optical techniques. Electrostatic adsorption was identified on TO-CNCs with the quaternized block copolymer. Small-angle neutron scattering experiments were performed to investigate the polymer behavior on the TO-CNC surfaces. Depending on the temperature, block copolymer induces the aggregation of nanocrystals after adsorption by connecting CNCs bundles with block copolymer chains. A reversible liquid-to-gel transition, triggered by temperature, was clearly detected by rheological measurements for the copolymer-CNC mixtures. At the optimal copolymer to CNC ratio the viscosity increased by 4 orders of magnitude at low shear rates. These stimuli-responsive CNC-based materials could be used as injectable biomedical systems.

  • 15.
    Hatton, Fiona
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. University of Sheffield, United Kingdom.
    Engström, Joakim
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
    Forsling, Josefine
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Malmström, Eva
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Carlmark, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Coating Technology.
    Biomimetic adsorption of zwitterionic-xyloglucan block copolymers to CNF: towards tailored super-absorbing cellulose materials2017In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 7, no 24, p. 14947-14958Article in journal (Refereed)
    Abstract [en]

    A biomimetic, facile approach to cellulose modification is the utilisation of self-adsorbing, naturally occurring biopolymers, such as the hemicellulose xyloglucan (XG). Herein, XG-block-poly(sulfobetaine methacrylate) (XG-b-PSBMA) zwitterionic block copolymers have been prepared and assessed for their ability to adsorb to cellulose, specifically cellulose nanofibrils (CNF). The polymers were synthesised using reversible addition-fragmentation chain-transfer (RAFT) polymerisation, employing an XG macromolecular RAFT agent (XG-RAFT), polymerising a sulfobetaine methacrylate (SBMA) under aqueous conditions. The incorporation of the XG block shifted the upper critical solution temperature (UCST) values to higher temperatures (20 and 30 °C) compared with the PSBMA homopolymers (17 and 22 °C) and the transition was also broadened. The adsorption of the polymers to a CNF surface was monitored using quartz crystal microbalance with dissipation monitoring (QCM-D), showing that the XG block enhanced the adsorption of the zwitterionic polymer. The formation of CNF-composite films was achieved utilising a facile vacuum filtration methodology, and the targeted compositions were confirmed by FT-IR and TGA analyses. The films exhibited high degrees of swelling in water, which were investigated at two different temperatures, 5 and 60 °C (below and above the polymer USCT values). These results highlight the advantage of using an XG block for the biomimetic modification of cellulose to form new cellulose-composite materials such as super-absorbing films.

  • 16.
    Hatton, Fiona
    et al.
    Dept Chem, Sheffield, S Yorkshire, England..
    Engström, Joakim
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Forsling, Josefine
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Malmström, Eva
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Ruda, Marcus
    CelluTech AB, Stockholm, Sweden..
    D'Agosto, Franck
    C2P2, UMR 5265, Villeurbanne, France..
    Lansalot, Muriel
    C2P2, UMR 5265, Villeurbanne, France..
    Carlmark, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Xyloglucan functional block-copolymers: A modular platform for cellulose modification2017In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Article in journal (Other academic)
  • 17.
    Kedzior, Stephanie
    et al.
    McMaster Univ, Chem Engn, Hamilton, ON, Canada..
    Hatton, Fiona
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Engström, Joakim
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Carlmark, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Malmström, Eva
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Cranston, Emily
    McMaster Univ, Chem Engn, Hamilton, ON, Canada..
    Surface modification of cellulose nanocrystals using controlled radical polymerization2016In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 251Article in journal (Other academic)
  • 18.
    Lo Re, Giada
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Engström, Joakim
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wu, Qiong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Malmström, Eva
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Gedde, Ulf W.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Olsson, Richard
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymeric Materials.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Improved Cellulose Nanofibril Dispersion in Melt-Processed Polycaprolactone Nanocomposites by a Latex-Mediated Interphase and Wet Feeding as LDPE Alternative2018In: ACS Applied Nano Materials, ISSN 2574-0970, Vol. 1, no 6, p. 2669-2677Article in journal (Refereed)
    Abstract [en]

    This work reports the development of a sustainable and green one-step wet-feeding method to prepare tougher and stronger nanocomposites from biodegradable cellulose nanofibrils (CNF)/polycaprolactone (PCL) constituents, compatibilized with reversible addition fragmentation chain transfer-mediated surfactant-free poly(methyl methacrylate) (PMMA) latex nanoparticles. When a PMMA latex is used, a favorable electrostatic interaction between CNF and the latex is obtained, which facilitates mixing of the constituents and hinders CNF agglomeration. The improved dispersion is manifested in significant improvement of mechanical properties compared with the reference material. The tensile tests show much higher modulus (620 MPa) and strength (23 MPa) at 10 wt % CNF content (compared to the neat PCL reference modulus of 240 and 16 MPa strength), while maintaining high level of work to fracture the matrix (7 times higher than the reference nanocomposite without the latex compatibilizer). Rheological analysis showed a strongly increased viscosity as the PMMA latex was added, that is, from a well-dispersed and strongly interacting CNF network in the PCL.

  • 19.
    Malmström, Eva
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Asem, Heba
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Porsch, Christian
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Engström, Joakim
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Carlmark, Anna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Nyström, Andreas
    Karolinska Inst, Dept Neurosci, Stockholm, Sweden..
    Polymeric nanoparticles explored for drug-delivery applications2017In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 254Article in journal (Other academic)
  • 20.
    Stamm, Arne
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Tengdelius, Mattias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Schmidt, Björn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Engström, Joakim
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Syrén, Per-Olof
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Fogelström, Linda
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Malmström, Eva
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Chemo- enzymatic pathways toward pinene- based renewable materials2019In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 21, no 10, p. 2720-2731Article in journal (Refereed)
    Abstract [en]

    Sobrerol methacrylate (SobMA) was synthesized and subsequently polymerized using different chemical and enzymatic routes. Sobrerol was enzymatically converted from -pinene in a small model scale by a Cytochrome P450 mutant from Bacillus megaterium. Conversion of sobrerol into SobMA was performed using both classical ester synthesis, i.e., acid chloride-reactions in organic solvents, and a more green approach, the benign lipase catalysis. Sobrerol was successfully esterified, leaving the tertiary alcohol and ene to be used for further chemistry. SobMA was polymerized into PSobMA using different radical polymerization techniques, including free radical (FR), controlled procedures (Reversible Addition Fragmentation chain-Transfer polymerization, (RAFT) and Atom Transfer Radical Polymerization (ATRP)) as well as by enzyme catalysis (horseradish peroxidase-mediated free radical polymerization). The resulting polymers showed high glass-transition temperatures (T-g) around 150 degrees C, and a thermal degradation onset above 200 degrees C. It was demonstrated that the T-g could be tailored by copolymerizing SobMa with appropriate methacrylate monomers and that the Flory-Fox equation could be used to predict the T-g. The versatility of PSobMA was further demonstrated by forming crosslinked thin films, either using the ene'-functionality for photochemically initiated thiol-ene'-chemistry, or reacting the tertiary hydroxyl-group with hexamethoxymethylmelamine, as readily used for thermally curing coatings systems.

  • 21.
    Vilela, Carla
    et al.
    Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal.
    Engström, Joakim
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Valente, Bruno F. A.
    Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal.
    Jawerth, Marcus
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Carlmark, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Freire, Carmen S. R.
    Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal.
    Exploiting poly(ɛ-caprolactone) and cellulose nanofibrils modified with latex nanoparticles for the development of biodegradable nanocomposites2018In: Polymer Composites, ISSN 0272-8397, E-ISSN 1548-0569Article in journal (Refereed)
    Abstract [en]

    This study reports the development of nanocomposites based on poly(?-caprolactone) (PCL) and cellulose nanofibrils (CNF) modified with cationic latex nanoparticles. The physical adsorption of these water-based latexes on the surface of CNF was studied as an environment-friendly strategy to enhance the compatibility of CNF with a hydrophobic polymeric matrix. The latexes are composed of amphiphilic block copolymers based on cationic poly(N,N-dimethylaminoethyl methacrylate-co-methacrylic acid) as the hydrophilic block, and either poly(methyl methacrylate) or poly(n-butyl methacrylate) as the hydrophobic block. The simple and practical melt-mixing of PCL- and latex-modified CNF yielded white homogeneous nanocomposites with complete embedment of the nanofibrils in the thermoplastic matrix. All nanocomposites are semicrystalline materials with good mechanical properties (Young's modulus?=?43.6?52.3 MPa) and thermal stability up to 335?340°C. Degradation tests clearly showed that the nanocomposites slowly degrade in the presence of lipase-type enzyme. These PCL/CNF-latex nanocomposite materials show great promise as future environmentally friendly packaging materials. POLYM. COMPOS., 2018. ? 2018 Society of Plastics Engineers

1 - 21 of 21
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf