Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dias, Jorge T
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Svedberg, Gustav
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Nystrand, Mats
    Andersson-Svahn, Helene
    Gantelius, Jesper
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Rapid signal enhancement method for nanoprobe-based biosensing2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 6837Article in journal (Refereed)
    Abstract [en]

    The introduction of nanomaterials as detection reagents has enabled improved sensitivity and facilitated detection in a variety of bioanalytical assays. However, high nanoprobe densities are typically needed for colorimetric detection and to circumvent this limitation several enhancement protocols have been reported. Nevertheless, there is currently a lack of universal, enzyme-free and versatile methods that can be readily applied to existing as well as new biosensing strategies. The novel method presented here is shown to enhance the signal of gold nanoparticles enabling visual detection of a spot containing < 10 nanoparticles. Detection of Protein G on paper arrays was improved by a 100-fold amplification factor in under five minutes of assay time, using IgG-labelled gold, silver, silica and iron oxide nanoprobes. Furthermore, we show that the presented protocol can be applied to a commercial allergen microarray assay, ImmunoCAP ISAC sIgE 112, attaining a good agreement with fluorescent detection when analysing human clinical samples.

  • 2.
    Dias, Jorge T.
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Svedberg, Gustav
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nystrand, Mats
    Thermo Fisher Sci IDD, Global Res & Dev, Uppsala, Sweden..
    Svahn Andersson, Helene
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Gantelius, Jesper
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Rapid signal enhancement method for nanoprobe-based biosensing (vol 7, 2017)2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, no 1, article id 8184Article in journal (Refereed)
    Abstract [en]

    In the Methods section of this Article references 18 to 22 are incorrectly cited. The correct references were omitted from the reference list and appear below as references 1-5. References 18 to 22 are correctly cited in Introduction and Results and Discussion sections. "AuNPs of 10 nm in diameter were prepared following the protocol described by Bastus et al.18." should read: "AuNPs of 10 nm in diameter were prepared following the protocol described by Bastus et al.1." "AgNPs of 90 nm in diameter were prepared following the protocol described by Rivero et al.19." should read: "AgNPs of 90 nm in diameter were prepared following the protocol described by Rivero et al.2" "The size was determined by UV-Vis spectroscopy according to the AgNPs size theory demonstrated by Malynych20." should read: "The size was determined by UV-Vis spectroscopy according to the AgNPs size theory demonstrated by Malynych3." "The coupling of antibody to the NPs was prepared following a modified version of a protocol previously reported by Puertas et al.21." should read: "The coupling of antibody to the NPs was prepared following a modified version of a protocol previously reported by Puertas et al.4." "Microarrays were prepared as previously reported by our group22." should read: "Microarrays were prepared as previously reported by our group5.

  • 3. Jeong, Yunjin
    et al.
    Svedberg, Gustav
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology.
    Réu, Pedro
    Lee, Yongju
    Song, Seo Woo
    Na, Hunjong
    Lee, Amos Chungwon
    Choi, Yeongjae
    Gantelius, Jesper
    Andersson Svahn, Helene
    Kwon, Sunghoon
    Solid-phase PCR on graphically encoded microparticles for multiplexed colorimetric detection of bacterial DNAManuscript (preprint) (Other academic)
  • 4.
    Nybond, Susanna
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Réu, Pedro
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Rhedin, Samuel
    Svedberg, Gustav
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Alfvén, Tobias
    Gantelius, Jesper
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Svahn Andersson, Helene
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Adenoviral detection by recombinase polymerase amplification and vertical flow paper microarray.2019In: Analytical and Bioanalytical Chemistry, ISSN 1618-2642, E-ISSN 1618-2650, Vol. 411, no 4, p. 813-822Article in journal (Refereed)
    Abstract [en]

    Respiratory viral infections often mimic the symptoms of infections caused by bacteria; however, restricted and targeted administration of antibiotics is needed to combat growing antimicrobial resistance. This is particularly relevant in low-income settings. In this work, we describe the use of isothermal amplification of viral DNA at 37 °C coupled to a paper-based vertical flow microarray (VFM) setup that utilizes a colorimetric detection of amplicons using functionalized gold nanoparticles. Two oligonucleotide probes, one in-house designed and one known adenoviral probe were tested and validated for microarray detection down to 50 nM using a synthetic target template. Furthermore, primers were shown to function in a recombinase polymerase amplification reaction using both synthetic template and viral DNA. As a proof-of-concept, we demonstrate adenoviral detection with four different adenoviral species associated with respiratory infections using the paper-based VFM format. The presented assay was validated with selected adenoviral species using the in-house probe, enabling detection at 1 ng of starting material with intra- and inter-assay %CV of ≤ 9% and ≤ 13%. Finally, we validate our overall method using clinical samples. Based on the results, the combination of recombinase polymerase amplification, paper microarray analysis, and nanoparticle-based colorimetric detection could thus be a useful strategy towards rapid and affordable multiplexed viral diagnostics.

  • 5.
    Reu, Pedro
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology.
    Svedberg, Gustav
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology.
    Hässler, Lars
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Möller, Björn
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Svahn Andersson, Helene
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Gantelius, Jesper
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology.
    A 61% lighter cell culture dish to reduce plastic waste2019In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 14, no 4, article id e0216251Article in journal (Refereed)
    Abstract [en]

    Cell culture is a ubiquitous and flexible research method. However, it heavily relies on plastic consumables generating millions of tonnes of plastic waste yearly. Plastic waste is a major and growing global concern. Here we describe a new cell culture dish that offers a culture area equivalent to three petri dishes but that is on average 61% lighter and occupies 67% less volume. Our dish is composed of a lid and three thin containers surrounded by a light outer shell. Cell culture can be performed in each of the containers sequentially. The outer shell provides the appropriate structure for the manipulation of the dish as a whole. The prototype was tested by sequentially growing cells in each of its containers. As a control, sequential cultures in groups of 3 petri dishes were performed. No statistical differences were found between the prototype and the control in terms of cell number, cell viability or cell distribution.

  • 6.
    Svedberg, Gustav
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Nano Biotechnology.
    Novel planar and particle-based microarrays for point-of-care diagnostics2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Point-of-care assays are easy-to-use, portable and inexpensive tests that can

    be used to aid diagnostics by measuring levels of disease-specific molecules

    in settings where access to advanced laboratory equipment and trained

    personnel are limited, such as at the patient's bedside or in low resource

    parts of developing countries. In order to achieve high multiplexing

    capacities, such assays can be based on planar microarrays consisting of

    spots immobilized on a flat surface or on particle-based microarrays based

    on populations of encoded particles. The aim of the work presented in this

    thesis is to develop new point-of-care amenable planar and particle-based

    microarrays that allow for highly multiplexed assays while maintaining low

    sample-to-result times, complexity and instrumentation requirements.

    Paper I demonstrates the use graphically encoded particles for colorimetric

    detection of autoantibodies using a consumer-grade flatbed scanner. Four

    graphical characters on the surface of each particle allows for millions of

    codes and the use of gold nanoparticles as a detection label allows both the

    code and the signal intensity to be read out in a single image.

    Paper II describes a signal enhancement method that increases the

    sensitivity of gold nanoparticle detection on planar microarrays. Using this

    method, detection of allergen-specific IgE can be carried out using a

    consumer-grade flatbed scanner instead of a more expensive fluorescence

    scanner without sacrificing assay performance.

    Paper III demonstrates the use of an isothermal DNA amplification method

    for detection of adenoviral DNA on a paper-based microarray. Using an

    isothermal amplification method eliminates the need for a thermocycler,

    reducing the instrumentation required for such detection.

    Paper IV shows the use of solid-phase PCR to amplify bacterial DNA directly

    on the surface of particles. This strategy reduces assay time by eliminating

    the need for separate amplification and hybridisation steps.

  • 7.
    Svedberg, Gustav
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. Science for Life Laboratory.
    Gantelius, Jesper
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. Science for Life Laboratory.
    Svahn, Helene Andersson
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. Science for Life Laboratory.
    A printer-free, vertical flow based, colorimetric planar bead array for point of care applications2015In: MicroTAS 2015 - 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Chemical and Biological Microsystems Society , 2015, p. 945-947Conference paper (Refereed)
    Abstract [en]

    We present a novel planar bead array that utilizes fluorescent colour coding, a convenient and quick bead immobilization technique, rapid pump-driven sample delivery and colorimetric readout enabling analysis of the array using an inexpensive USB microscope or smartphone camera. The array combines high multiplexing potential with a low assay run time and point of care amenability due to low equipment requirements.

  • 8.
    Svedberg, Gustav
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Jeong, Yunjin
    Na, Hunjong
    Jang, Jisung
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kwon, Sunghoon
    Gantelius, Jesper
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Svahn Andersson, Helene
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Towards encoded particles for highly multiplexed colorimetric point of care autoantibody detection2017In: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 17, no 3, p. 549-556Article in journal (Refereed)
    Abstract [en]

    Highly multiplexed point of care tests could improve diagnostic accuracy and differential diagnostic capacity in for instance emergency medicine and low resource environments. Available technology platforms for POC biomarker detection are typically simplex or low-plexed, whereas common lab-based microarray systems allow for the simultaneous detection of thousands of DNA or protein biomarkers. In this study, we demonstrate a novel suspension particle array platform that utilizes 900 mu m bricks for POC amenable colorimetric biomarker detection with an encoding capacity of over two million. Due to the mm-scale size, both the lithographic codes and colorimetric signals of individual particles can be visualized using a consumer grade office flatbed scanner, with a potential for simultaneous imaging of around 19000 particles per scan. The analytical sensitivity of the assay was determined to be 4 ng ml(-1) using an antibody model system. As a proof of concept, autoantibodies toward anoctamin 2 were detected in order to discriminate between multiple sclerosis plasma samples and healthy controls with p < 0.0001 and an inter-assay % CV of 9.44%.

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf