Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Eriksson, Mimmi
    et al.
    RISE Res Inst Sweden, Biosci & Mat Surface, Proc & Formulat, SE-11486 Stockholm, Sweden.
    Tuominen, Mikko
    RISE Res Inst Sweden, Biosci & Mat Surface, Proc & Formulat, SE-11486 Stockholm, Sweden..
    Jarn, Mikael
    RISE Res Inst Sweden, Biosci & Mat Surface, Proc & Formulat, SE-11486 Stockholm, Sweden..
    Claesson, Per M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Research Institutes of Sweden, Bioscience and Materials − Surface, Process and Formulation, SE-114 86 Stockholm, Sweden.
    Wallqvist, Viveca
    RISE Res Inst Sweden, Biosci & Mat Surface, Proc & Formulat, SE-11486 Stockholm, Sweden..
    Butt, Hans Juergen
    Max Planck Inst Polymer Res, Dept Phys Interfaces, Ackermannweg 10, DE-55128 Mainz, Germany..
    Vollmer, Doris
    Max Planck Inst Polymer Res, Dept Phys Interfaces, Ackermannweg 10, DE-55128 Mainz, Germany..
    Kappl, Michael
    Max Planck Inst Polymer Res, Dept Phys Interfaces, Ackermannweg 10, DE-55128 Mainz, Germany..
    Schoelkopf, Joachim
    Omya Int AG, Baslerstr 42, CH-4665 Oftringen, Switzerland..
    Gane, Patrick A. C.
    Omya Int AG, Baslerstr 42, CH-4665 Oftringen, Switzerland.;Aalto Univ, Sch Chem Engn, Dept Bioprod & Biosyst, FI-00076 Aalto, Finland..
    Teisala, Hannu
    Max Planck Inst Polymer Res, Dept Phys Interfaces, Ackermannweg 10, DE-55128 Mainz, Germany..
    Swerin, Agne
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Res Inst Sweden, Biosci & Mat Surface, Proc & Formulat, SE-11486 Stockholm, Sweden..
    Direct Observation of Gas Meniscus Formation on a Superhydrophobic Surface2019In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 13, no 2, p. 2246-2252Article in journal (Refereed)
    Abstract [en]

    The formation of a bridging gas meniscus via cavitation or nanobubbles is considered the most likely origin of the submicrometer long-range attractive forces measured between hydrophobic surfaces in aqueous solution. However, the dynamics of the formation and evolution of the gas meniscus is still under debate, in particular, in the presence of a thin air layer on a superhydrophobic surface. On superhydrophobic surfaces the range can even exceed 10 mu m. Here, we report microscopic images of the formation and growth of a gas meniscus during force measurements between a superhydrophobic surface and a hydrophobic microsphere immersed in water. This is achieved by combining laser scanning confocal microscopy and colloidal probe atomic force microscopy. The configuration allows determination of the volume and shape of the meniscus, together with direct calculation of the Young-Laplace capillary pressure. The long-range attractive interactions acting on separation are due to meniscus formation and volume growth as air is transported from the surface layer.

  • 2.
    Koppolu, Rajesh
    et al.
    Abo Akad Univ, Ctr Funct Mat, Lab Paper Coating & Converting, SF-20500 Turku, Finland..
    Lahti, Johanna
    Tampere Univ Technol, Paper Converting & Packaging, Tampere 33100, Finland..
    Abitbol, Tiffany
    RISE Res Inst Sweden, Bioecon Biorefinery & Energy, S-11428 Stockholm, Sweden..
    Swerin, Agne
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Kuusipalo, Jurkka
    Tampere Univ Technol, Paper Converting & Packaging, Tampere 33100, Finland..
    Toivakka, Martti
    Abo Akad Univ, Ctr Funct Mat, Lab Paper Coating & Converting, SF-20500 Turku, Finland..
    Continuous Processing of Nanocellulose and Polylactic Acid into Multilayer Barrier Coatings2019In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 12, p. 11920-11927Article in journal (Refereed)
    Abstract [en]

    Recent years have seen an increased interest toward utilizing biobased and biodegradable materials for barrier packaging applications. Most of the abovementioned materials usually have certain shortcomings that discourage their adoption as a preferred material of choice. Nanocellulose falls into such a category. It has excellent barrier against grease, mineral oils, and oxygen but poor tolerance against water vapor, which makes it unsuitable to be used at high humidity. In addition, nanocellulose suspensions' high viscosity and yield stress already at low solid content and poor adhesion to substrates create additional challenges for high-speed processing. Polylactic acid (PLA) is another potential candidate that has reasonably high tolerance against water vapor but rather a poor barrier against oxygen. The current work explores the possibility of combining both these materials into thin multilayer coatings onto a paperboard. A custom-built slot-die was used to coat either microfibrillated cellulose or cellulose nanocrystals onto a pigment-coated baseboard in a continuous process. These were subsequently coated with PLA using a pilot-scale extrusion coater. Low-density polyethylene was used as for reference extrusion coating. Cationic starch precoating and corona treatment improved the adhesion at nanocellulose/baseboard and nanocellulose/PLA interfaces, respectively. The water vapor transmission rate for nanocellulose + PLA coatings remained lower than that of the control PLA coating, even at a high relative humidity of 90% (38 degrees C). The multilayer coating had 98% lower oxygen transmission rate compared to just the PLA-coated baseboard, and the heptane vapor transmission rate reduced by 99% in comparison to the baseboard. The grease barrier for nanocellulose + PLA coatings increased 5-fold compared to nanocellulose alone and 2-fold compared to PLA alone. This approach of processing nanocellulose and PLA into multiple layers utilizing slot-die and extrusion coating in tandem has the potential to produce a barrier packaging paper that is both 100% biobased and biodegradable.

  • 3. MacKenzie, J.
    et al.
    Söderberg, D.
    Swerin, Agne
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Lundell, F.
    Turbulent stress measurements with phase-contrast magnetic resonance through tilted slices2017In: Experiments in Fluids, ISSN 0723-4864, E-ISSN 1432-1114, Vol. 58, no 5, article id 51Article in journal (Refereed)
    Abstract [en]

    Aiming at turbulent measurements in opaque suspensions, a simplistic methodology for measuring the turbulent stresses with phase-contrast magnetic resonance velocimetry is described. The method relies on flow-compensated and flow-encoding protocols with the flow encoding gradient normal to the slice. The experimental data is compared with direct numerical simulations (DNS), both directly but also, more importantly, after spatial averaging of the DNS data that resembles the measurement and data treatment of the experimental data. The results show that the most important MRI data (streamwise velocity, streamwise variance and Reynolds shear stress) is reliable up to at least r¯ = 0.75 without any correction, paving the way for dearly needed turbulence and stress measurements in opaque suspensions.

  • 4. Niga, P.
    et al.
    Hansson-Mille, P. M.
    Swerin, Agne
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE – Research Institute of Sweden.
    Claesson, Per M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE – Research Institute of Sweden.
    Schoelkopf, J.
    Gane, P. A. C.
    Bergendal, Erik
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Tummino, A.
    Campbell, R. A.
    Johnson, C. Magnus
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Interactions between model cell membranes and the neuroactive drug propofol2018In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 526, p. 230-243Article in journal (Refereed)
    Abstract [en]

    Vibrational sum frequency spectroscopy (VSFS) complemented by surface pressure isotherm and neutron reflectometry (NR) experiments were employed to investigate the interactions between propofol, a small amphiphilic molecule that currently is the most common general anaesthetic drug, and phospholipid monolayers. A series of biologically relevant saturated phospholipids of varying chain length from C18 to C14 were spread on either pure water or propofol (2,6-bis(1-methylethyl)phenol) solution in a Langmuir trough, and the change in the molecular structure of the film, induced by the interaction with propofol, was studied with respect to the surface pressure. The results from the surface pressure isotherm experiments revealed that propofol, as long as it remains at the interface, enhances the fluidity of the phospholipid monolayer. The VSF spectra demonstrate that for each phospholipid the amount of propofol in the monolayer region decreases with increasing surface pressure. Such squeeze out is in contrast to the enhanced interactions that can be exhibited by more complex amphiphilic molecules such as peptides. At surface pressures of 22–25 mN m−1, which are relevant for biological cell membranes, most of the propofol has been expelled from the monolayer, especially in the case of the C16 and C18 phospholipids that adopt a liquid condensed phase packing of its alkyl tails. At lower surface pressures of 5 mN m−1, the effect of propofol on the structure of the alkyl tails is enhanced when the phospholipids are present in a liquid expanded phase. Specifically, for the C16 phospholipid, NR data reveal that propofol is located exclusively in the head group region, which is rationalized in the context of previous studies. The results imply a non-homogeneous distribution of propofol in the plane of real cell membranes, which is an inference that requires urgent testing and may help to explain why such low concentration of the drug are required to induce general anaesthesia.

  • 5.
    Niga, Petru
    et al.
    RISE Res Inst Sweden Chem Mat & Surfaces, Box 5607, SE-11486 Stockholm, Sweden..
    Hansson-Mille, Petra M.
    RISE Res Inst Sweden Chem Mat & Surfaces, Box 5607, SE-11486 Stockholm, Sweden..
    Swerin, Agne
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Claesson, Per M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Schoelkopf, Joachim
    Omya Int AG, Baslerstr 42, CH-4665 Oftringen, Switzerland..
    Gane, Patrick A. C.
    Omya Int AG, Baslerstr 42, CH-4665 Oftringen, Switzerland.;Aalto Univ, Sch Chem Technol, Dept Bioprod & Biosyst, FI-00076 Helsinki, Finland..
    Dai, Jing
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Furo, Istvan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
    Campbell, Richard A.
    Inst Laue Langevin, 71 Ave Martyrs,CS20156, F-38042 Grenoble 9, France.;Univ Manchester, Div Pharm & Optometry, Manchester M13 9PT, Lancs, England..
    Johnson, C. Magnus
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Propofol adsorption at the air/water interface: a combined vibrational sum frequency spectroscopy, nuclear magnetic resonance and neutron reflectometry study2019In: Soft Matter, ISSN 1744-683X, E-ISSN 1744-6848, Vol. 15, no 1, p. 38-46Article in journal (Refereed)
    Abstract [en]

    Propofol is an amphiphilic small molecule that strongly influences the function of cell membranes, yet data regarding interfacial properties of propofol remain scarce. Here we consider propofol adsorption at the air/water interface as elucidated by means of vibrational sum frequency spectroscopy (VSFS), neutron reflectometry (NR), and surface tensiometry. VSFS data show that propofol adsorbed at the air/ water interface interacts with water strongly in terms of hydrogen bonding and weakly in the proximity of the hydrocarbon parts of the molecule. In the concentration range studied there is almost no change in the orientation adopted at the interface. Data from NR show that propofol forms a dense monolayer with a thickness of 8.4 angstrom and a limiting area per molecule of 40 angstrom(2), close to the value extracted from surface tensiometry. The possibility that islands or multilayers of propofol form at the air/water interface is therefore excluded as long as the solubility limit is not exceeded. Additionally, measurements of the 1H NMR chemical shifts demonstrate that propofol does not form dimers or multimers in bulk water up to the solubility limit.

  • 6. Reverdy, C.
    et al.
    Belgacem, N.
    Moghaddam, M. S.
    Sundin, M.
    Swerin, Agne
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. RISE Research Institutes of Sweden – Bioscience and Materials, Box 5607, Stockholm, Sweden.
    Bras, J.
    One-step superhydrophobic coating using hydrophobized cellulose nanofibrils2018In: Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757, E-ISSN 1873-4359, Vol. 544, p. 152-158Article in journal (Refereed)
    Abstract [en]

    Superhydrophobic surfaces have high potential in self-cleaning and anti-fouling applications. We developed a one-step superhydrophobic coating formulation containing sodium oleate (NaOl), hydrophobized precipitated calcium carbonate and biobased cellulose nanofibrils (CNFs) hydrophobized with either alkyl ketene dimer (AKD) or amino propyl trimethoxy silane (APMS) as a binder to fix and distribute the particles. Coatings were made on paperboard and the wetting behavior of the surface was assessed. Static, advancing and receding contact angles with water as well as roll-off and water shedding angle were compared to coatings made with styrene butadiene latex as binder instead of CNFs. Modifications with alkyl ketene dimer showed most promising results for a viable process in achieving superhydrophobic paperboard but required reformulation of the coating with optimized and reduced amount of NaOl to avoid surfactant-induced wetting via excess NaOl. A static water contact angle of 150° was reached for the CNF-AKD. The use of CNFs enables the improvement of coating quality avoiding cracking with the use of nanocellulose as a renewable binder.

  • 7.
    Sedighi Moghaddam, Maziar
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials. SP Tech Res Inst Sweden Chem Mat & Surfaces, Sweden.
    Van den Bulcke, Jan
    Wålinder, Magnus E. P.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials.
    Claesson, Per M.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Van Acker, Joris
    Swerin, Agne
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Microstructure of chemically modified wood using X-ray computed tomography in relation to wetting properties2017In: Holzforschung, ISSN 0018-3830, E-ISSN 1437-434X, Vol. 71, no 2, p. 119-128Article in journal (Refereed)
    Abstract [en]

    X-ray computed tomography (XCT) was utilized to visualize and quantify the 2D and 3D microstructure of acetylated southern yellow pine (pine) and maple, as well as furfurylated pine samples. The total porosity and the porosity of different cell types, as well as cell wall thickness and maximum opening of tracheid lumens were evaluated. The wetting properties (swelling and capillary uptake) were related to these microstructural characteristics. The data show significant changes in the wood structure for furfurylated pine sapwood samples, including a change in tracheid shape and filling of tracheids by furan polymer. In contrast, no such changes were noted for the acetylated pine samples at the high resolution of 0.8 mu m. The XCT images obtained for the furfurylated maple samples demonstrated that all ray cells and some vessel elements were filled with furan polymer while the fibers largely remained unchanged. Furfurylation significantly decreased the total porosity of both the maple and pine samples. Furthermore, this was observed in both earlywood (EW) and latewood (LW) regions in the pine samples. In contrast, the total porosity of pine samples was hardly affected by acetylation. These findings are in line with wetting results demonstrating that furfurylation reduces both swelling and capillary uptake in contrast to acetylation which reduces mostly swelling. Furfurylation significantly increased the cell wall thickness of both the maple and pine samples, especially at higher levels of furfurylation.

  • 8.
    Swerin, Agne
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Tech Res Inst Sweden, Biosci & Mat Surface Proc & Formulat, SE-11486 Stockholm, Sweden.
    Dimensional Scaling of Aqueous Ink Imbibition and Inkjet Printability on Porous Pigment Coated Paper-A Revisit2018In: Industrial & Engineering Chemistry Research, ISSN 0888-5885, E-ISSN 1520-5045, Vol. 57, no 49, p. 16684-16691Article in journal (Refereed)
    Abstract [en]

    A recently published dimensional scaling of infiltration of water-based inkjet fluids was used to revisit published inkjet printability data on mineral-pigment-based, inkjet-receptive coated papers. The dimensional scaling was developed using simple fluids on homogeneous isotropic media and applied on uncoated papers using complex inkjet fluids but so far has not been related to printability. It is shown that the scaling can also work for coated papers using commercial dye- and pigment-based inks with a suggested relation to printability as given by the color gamut area, in which the primary factor is the product of permeability and capillary pressure. A successful scaling suggests that inkjet printability can be predicted from flow and materials parameters, namely, porosity, viscosity, imbibed volume, permeability, and capillary pressure, and would be of general applicability in other areas of inkjet printing. The results further imply the usefulness of the approach in other functional surface modification using waterborne procedures on hard or soft porous materials.

  • 9.
    Swerin, Agne
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Probing interactions of nanocellulose and sugars using rheology2017In: International Conference on Nanotechnology for Renewable Materials 2017, TAPPI Press , 2017, p. 305-314Conference paper (Refereed)
  • 10.
    Swerin, Agne
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Res Inst Sweden, Biosci & Mat, Stockholm, Sweden..
    Super liquid repellent surfaces - non-wetting forces, cavity growth and coatings on biobased materials2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 11.
    Swerin, Agne
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Brandner, B. D.
    Interaction in cellulosic fiber-fiber joints at humid and wet conditions by AFM and confocal Raman microscopy2018In: International Conference on Nanotechnology for Renewable Materials 2018, TAPPI Press , 2018, p. 64-73Conference paper (Refereed)
    Abstract [en]

    Interactions in fiber-fiber joints: • Interaction in crossed cellulosic fiber joints between was studied by atomic force colloidal probe microscopy (AFM) and mapping of surfaces and bonding sites using confocal Raman microspectroscopy (CRM) • CRM imaged surfaces and joints on thermomechanical pulp fibers, bleached pulp fibers and rayon fibers • Chemical and structural constituents relevant for bonding at high enough resolution can be imaged • Differences due to stresses or strains at, or close to, the fiber-fiber bonded area was detected but could not be evaluated. • Clean rayon fibers and bleached kraft pulp fibers, attached to an AFM cantilever and to the edge of an AFM chip, were brought in contact in a 90° crossed configuration • Forces measured in humid air and in water during approach and during retract • Bleached kraft pulp fiber-fiber joints can measured combined in adhesion and friction • Rayon fibers at different RH's give influence of capillary attraction at cross-points. Adhesion values significantly less than predicted by capillary attraction, due to roughness. 

  • 12.
    Wojas, Natalia
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Res Inst Sweden, Biosci & Mat, Stockholm, Sweden..
    Swerin, Agne
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Res Inst Sweden.
    Claesson, Per M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Res Inst Sweden, Biosci & Mat, Stockholm, Sweden.;KTH Royal Inst Technol, CHE Surface & Corros Sci, Stockholm, Sweden..
    Wallqvist, Viveca
    RISE Res Inst Sweden, Biosci & Mat, Stockholm, Sweden..
    Jarn, Mikael
    RISE Res Inst Sweden, Biosci & Mat, Stockholm, Sweden..
    Gane, Patrick
    Omya Int AG, Oftringen, Switzerland..
    Schoelkopf, Joachim
    Omya Int AG, Oftringen, Switzerland..
    Adam, Marcus
    Omya Int AG, Oftringen, Switzerland..
    Adsorption of water and gaseous species on calcite surfaces at different relative humidity and temperature2018In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 13.
    Wojas, Natalia
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Res Inst Sweden, Div Biosci & Mat Surface Proc & Formulat, Box 5607, SE-11486 Stockholm, Sweden.
    Swerin, Agne
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Res Inst Sweden, Div Biosci & Mat Surface Proc & Formulat, Box 5607, SE-11486 Stockholm, Sweden.
    Wallqvist, Viveca
    RISE Res Inst Sweden, Div Biosci & Mat Surface Proc & Formulat, Box 5607, SE-11486 Stockholm, Sweden..
    Jarn, Mikael
    RISE Res Inst Sweden, Div Biosci & Mat Surface Proc & Formulat, Box 5607, SE-11486 Stockholm, Sweden..
    Schoelkop, Joachim
    Omya Int AG, Baslerstr 42, CH-4665 Oftringen, Switzerland..
    Gane, Patrick A. C.
    Omya Int AG, Baslerstr 42, CH-4665 Oftringen, Switzerland.;Aalto Univ, Sch Chem Engn, Dept Bioprod & Biosyst, POB 16300, FI-00076 Aalto, Finland..
    Claesson, Per M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. RISE Res Inst Sweden, Div Biosci & Mat Surface Proc & Formulat, Box 5607, SE-11486 Stockholm, Sweden.
    Iceland spar calcite: Humidity and time effects on surface properties and their reversibility2019In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 541, p. 42-55Article in journal (Refereed)
    Abstract [en]

    Understanding the complex and dynamic nature of calcite surfaces under ambient conditions is important for optimizing industrial applications. It is essential to identify processes, their reversibility, and the relevant properties of CaCO3 solid-liquid and solid-gas interfaces under different environmental conditions, such as at increased relative humidity (RH). This work elucidates changes in surface properties on freshly cleaved calcite (topography, wettability and surface forces) as a function of time (<= 28 h) at controlled humidity (<= 3-95 %RH) and temperature (25.5 degrees C), evaluated with atomic force microscopy (AFM) and contact angle techniques. In the presence of humidity, the wettability decreased, liquid water capillary forces dominated over van der Waals forces, and surface domains, such as hillocks, height about 7.0 angstrom, and trenches, depth about -3.5 angstrom, appeared and grew primarily in lateral dimensions. Hillocks demonstrated lower adhesion and higher deformation in AFM experiments. We propose that the growing surface domains were formed by ion dissolution and diffusion followed by formation of hydrated salt of CaCO3. Upon drying, the height of the hillocks decreased by about 50% suggesting their alteration into dehydrated or less hydrated CaCO3. However, the process was not entirely reversible and crystallization of new domains continued at a reduced rate.

1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf