Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Levämäki, Henrik
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics.
    Tian, Ye
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Vitos, Levente
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. KTH, School of Engineering Sciences (SCI), Applied Physics.
    Ropo, M.
    An automated algorithm for reliable equation of state fitting of magnetic systems2019In: Computational materials science, ISSN 0927-0256, E-ISSN 1879-0801, Vol. 156, p. 121-128Article in journal (Refereed)
    Abstract [en]

    In computational physics and materials science ground-state properties are often extracted from an equation of state fit to energy-volume data. Magnetic systems often have multiple magnetic phases present in the energy-volume data, which poses a challenge for the fitting approach because the results are sensitive to the selection of included fitting points. This is because practically all popular equation of state fitting functions, such as Murnaghan and Birch-Murnaghan, assume just one phase and therefore cannot correctly fit magnetic energy-volume data that contains multiple phases. When fitting magnetic energy-volume data it is therefore important to select the range of fitting points in such a way that only points from the one relevant phase are included. We present a simple algorithm that makes the point selection automatically. Selecting fitting points automatically removes human bias and should also be useful for large-scale projects where selecting all fitting points by hand is not feasible.

  • 2.
    Tian, Ye
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Martensitic Transformation in Stainless Steels2018Doctoral thesis, comprehensive summary (Other academic)
  • 3.
    Tian, Ye
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Borgenstam, Annika
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Hedström, Peter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Comparing the deformation-induced martensitic transformation with the athermal martensitic transformation in Fe-Cr-Ni alloysManuscript (preprint) (Other academic)
    Abstract [en]

    The microstructure of martensite formed athermally or via deformation in Fe-Cr-Ni alloys with different austenite (γ) stability has been investigated using microscopy. Two different types of microstructures, viz. blocky and banded structure, are observed after athermal and deformation-induced martensitic transformation (AMT and DIMT, respectively). The blocky structure form during AMT or DIMT if the stability of γ is low. In both these cases, there is a significant chemical driving force for the transformation from γ to α’-martensite (α’), and if it is not hindered by e.g. planar defects it can grow uninhibited into a blocky morphology without the necessity to nucleate new crystallographic variants to accommodate the transformation strains. On the other hand, the banded structure is due to the formation of ε-martensite (ε) during AMT, or the wider concept shear bands in the case of DIMT. The shear bands, and in particular ε, lower the nucleation barrier for α’ that forms within individual shear bands if the stability of γ is low. Neighbouring α’ units predominantly have a twin-related orientation relationship to accommodate the transformation strains. With increasing γ stability during DIMT, variant selection becomes pronounced with preferred formation of variants favourable oriented with respect to the applied stress/strain field. The formation of α’ at individual shear bands is also rare, since no ε is present and instead α’ forms at the intersection of shear bands for more stable γ. In conclusion, AMT and DIMT for low γ stability lead to similar microstructures, whereas the DIMT microstructure for high γ stability is distinct.

  • 4.
    Tian, Ye
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Das, Yadunandan
    Borgenstam, Annika
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Hedström, Peter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Mechanical stability of austenite grains towards martensitic transformation in a TRIP-assisted duplex stainless steelManuscript (preprint) (Other academic)
    Abstract [en]

    The mechanical behavior of austenite was investigated in a TRIP duplex stainless steel (TDSS). Uniaxial tensile testing was performed and the microstructure was characterized using electron backscatter diffraction. A strong <111> texture develops along the loading direction (LD) due to preferential martensitic transformation and grain rotation. Austenite oriented with <112> and <100> parallel to the LD transform preferentially, since multiple slip planes activate for these orientations. These observations agree with observations in single-phase austenitic alloys with low stacking fault energy. In conclusion, it is indicated that the stability of austenite grains towards martensitic transformation is mainly dictated by crystallographic orientation.

  • 5.
    Tian, Ye
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Forsberg, Annika
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Hedström, Peter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Comparing the deformation-induced martensitic transformation with the athermal martensitic transformation in Fe-Cr-Ni alloys2018In: Journal of Alloys and Compounds, ISSN 0925-8388, E-ISSN 1873-4669, Vol. 766, p. 131-139Article in journal (Refereed)
    Abstract [en]

    The microstructure of martensite formed athermally or via deformation in Fe-Cr-Ni alloys with different austenite (gamma) stability has been investigated using microscopy. Two different types of microstructures, viz. blocky and banded structure, are observed after athermal and deformation-induced martensitic transformation (AMT and DIMT, respectively). The blocky structure form during AMT or DIMT if the stability of gamma is low. In both cases, there is a significant chemical driving force for the transformation from gamma to alpha'-martensite (alpha'), and if it is not hindered by e.g. planar defects it can grow uninhibited into a blocky morphology without the necessity to nucleate new crystallographic variants to accommodate the transformation strains. On the other hand, the banded structure is due to the formation of epsilon-martensite (epsilon) during AMT, or the wider concept shear bands in the case of DIMT. The shear bands, and in particular epsilon, lower the nucleation barrier for alpha' that forms within individual shear bands if the stability of gamma is low. Neighbouring alpha' units predominantly have a twin-related orientation relationship to accommodate the transformation strains. With increasing y stability during DIMT, variant selection becomes pronounced with preferred formation of variants favorable oriented with respect to the applied stress/strain field. The formation of alpha' at individual shear bands is also rare, since nos is present and instead alpha' forms at the intersection of shear bands for more stable gamma. In conclusion, AMT and DIMT for low gamma stability lead to similar microstructures, whereas the DIMT microstructure for high y stability is distinct. 

  • 6.
    Tian, Ye
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Lienert, Ulrich
    Borgenstam, Annika
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Fischer, Torben
    Hedström, Peter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Martensite formation during incremental cooling of Fe-Cr-Ni alloys: An in-situ bulk X-ray study of the grain-averaged and single-grain behavior2017In: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 136, p. 124-127Article in journal (Refereed)
    Abstract [en]

    The formation of martensite (epsilon and alpha') in metastable austenitic Fe-18Cr-(10-11.5)Ni alloys was investigated in situ during cooling. High-energy X-rays were used to study the bulk of the alloys. Both grain-averaged and single grain data was acquired. s played an important role in the formation of a' with an indistinguishable difference in the martensite start temperature. The single-grain data indicated that stacking faults appear as precursors to a An analogy can be made with deformation-induced martensitic transformation, where the generation of nucleation sites would significantly lower the driving force required to overcome the energy barrier in low stacking fault energy Fe-Cr-Ni alloys.

  • 7.
    Tian, Ye
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Lin, Sen
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Ko, J. Y. P.
    Lienert, U.
    Forsberg, Annika
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Hedström, Peter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Micromechanics and microstructure evolution during in situ uniaxial tensile loading of TRIP-assisted duplex stainless steels2018In: Materials Science & Engineering: A, ISSN 0921-5093, E-ISSN 1873-4936, Vol. 734, p. 281-290Article in journal (Refereed)
    Abstract [en]

    Transformation-induced plasticity (TRIP) assisted duplex stainless steels, with three different stabilities of the austenite phase, were investigated by synchrotron x-ray diffraction characterization during in situ uniaxial tensile loading. The micromechanics and the deformation-induced martensitic transformation (DIMT) in the bulk of the steels were investigated in situ. Furthermore, scanning electron microscopy supplemented the in situ analysis by providing information about the microstructure of annealed and deformed specimens. The dependence of deformation structure on austenite stability is similar to that of single-phase austenitic steels with shear bands and bcc-martensite (α′) generally observed, and blocky α′ is only frequent when the austenite stability is low. These microstructural features, i.e. defect structure and deformation-induced martensite, are correlated with the micro- and macro-mechanics of the steels with elastoplastic load transfer from the weaker phases to the stronger α′, in particular this occurs close to the point of maximum rate of α′ formation. A clear strain-hardening effect from α′ is seen in the most unstable austenite leading to a pronounced TRIP effect. 

  • 8.
    Tian, Ye
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Lin, Sen
    Peter Ko, J. Y.
    Lienert, Ulrich
    Borgenstam, Annika
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Hedström, Peter
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Micromechanics and microstructure evolution during in situ uniaxial tensile loading of TRIP-assisted duplex stainless steelsManuscript (preprint) (Other academic)
    Abstract [en]

    Two transformation-induced plasticity (TRIP) assisted duplex stainless steels, with three different stabilities of the austenite phase, were investigated by synchrotron X-ray diffraction characterization during in situ uniaxial tensile loading. The micromechanics and the deformation-induced martensitic transformation (DIMT) in the bulk of the steels were investigated in situ. Furthermore, scanning electron microscopy supplemented the in situ analysis by providing information about the microstructure of annealed and deformed specimens. The dependence of deformation structure on austenite stability is similar to that of single-phase austenitic steels where shear bands and bcc-martensite (α’) are generally observed, and blocky α’ is only frequent when the austenite stability is low. These microstructural features, i.e. defect structure and deformation-induced martensite, are correlated with the micro- and macro-mechanics of the steels with elastoplastic load transfer from the weaker phases to the stronger α’, in particular this occurs close to the point of maximum rate of α’ formation. A clear strain-hardening effect from α’ is seen in the most unstable austenite leading to a pronounced TRIP effect.

  • 9.
    Wang, Wei
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering. Dept Chemical Engineering, Northeast Electric Power University, Jilin, 132012, China.
    Hou, Ziyong
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Physical Metallurgy.
    Lizarrága, Raquel
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Tian, Ye
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Babu, Prasath
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
    Holmström, Erik
    Coromant R & D, SE-12680, Stockholm, Sweden.
    Mao, Huahai
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering. Thermo-Calc Software, Råsundav. 18, SE-16767, Solna, Sweden.
    Larsson, Henrik
    KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Physical Metallurgy. Thermo-Calc Software, Råsundav. 18, SE-16767, Solna, Sweden.
    An experimental and theoretical study of duplex fcc+hcp cobalt based entropic alloys2019In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 176, p. 11-18Article in journal (Refereed)
    Abstract [en]

    Martensitically formed duplex fcc + hcp Co-based entropic alloys have been investigated both experimentally and theoretically. Theoretical predictions are in good agreement with experimental observations. A fair correlation is found between calculated driving forces for a partitionless fcc→hcp transformation and experimentally obtained phase fractions.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf