Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Furdek, Marija
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Muhammad, Ajmal
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Skorin-Kapov, N.
    Survivable manycast, anycast and replica placement in optical inter-datacenter networks2017In: 2017 19th International Conference on Transparent Optical Networks (ICTON), IEEE Computer Society, 2017, article id 8024994Conference paper (Refereed)
    Abstract [en]

    Inter-datacenter networks need to support datacenter communication with the end-users, as well as content replication and synchronization between datacenters in a reliable manner. This paper presents a survivable manycast, anycast and replica placement strategy for optical inter-datacenter networks resulting in reduced overall network resource consumption.

  • 2.
    Muhammad, Ajmal
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Skorin-Kapov, Nina
    Furdek, Marija
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Manycast, Anycast, and Replica Placement in Optical Inter-Datacenter Networks2017In: Journal of Optical Communications and Networking, ISSN 1943-0620, E-ISSN 1943-0639, Vol. 9, no 12, p. 1161-1171Article in journal (Refereed)
    Abstract [en]

    The expanding adoption of cloud-based services in recent years puts stringent requirements on datacenters (DCs) and their interconnection networks. Optical inter-datacenter networks represent the only viable option for satisfying the huge bandwidth required to replicate and update content for cloud-based services across geographically dispersed datacenters. In addition to content replication and synchronization, optical inter-datacenter networks must also support communication between datacenters and end-users. The resulting new traffic patterns and the enormous traffic volumes call for new capacityefficient approaches for inter-datacenter network designs that incorporate both transport and datacenter resource planning. This paper introduces an integrated approach to optimally place content replicas across DCs by concurrently solving the routing and wavelength assignment (RWA) problem for both inter-DC content replication and synchronization traffic following the manycast routing paradigm, and end-user-driven user-to-DC communication following the anycast routing paradigm, with the objective to reduce the overall network capacity usage. To attain this goal, the manycast, anycast, and replica placement (MARP) problem is formulated as an integer linear program to find optimal solutions for smaller problem instances. Due to the problem complexity, a scalable and efficient heuristic algorithm is developed to solve larger network scenarios. Simulation results demonstrate that the proposed integrated MARP strategy can significantly reduce the network capacity usage when compared to the benchmarking replica placement and RWA schemes aimed at minimizing the resources consumed by either of the two types of traffic independently.

  • 3. Yan, L.
    et al.
    Fiorani, Matteo
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Muhammad, Ajmal
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Tornatore, M.
    Agrell, E.
    Wosinska, Lena
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Network performance trade-off in optical spatial division multiplexing data centers2017In: 2017 Optical Fiber Communications Conference and Exhibition, OFC 2017 - Proceedings, Institute of Electrical and Electronics Engineers Inc. , 2017Conference paper (Refereed)
    Abstract [en]

    We propose close-to-optimal network resource allocation algorithms for modular data centers using optical spatial division multiplexing. A trade-off between the number of established connections and throughput is identified and quantified.

  • 4. Yan, Li
    et al.
    Fiorani, Matteo
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Muhammad, Ajmal
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Tornatore, Massimo
    Agrell, Erik
    Wosinska, Lena
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Network Performance Trade-Off in Optical Spatial Division Multiplexing Data Centers2017In: 2017 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), IEEE , 2017Conference paper (Refereed)
    Abstract [en]

    We propose close-to-optimal network resource allocation algorithms for modular data centers using optical spatial division multiplexing. A trade-off between the number of established connections and throughput is identified and quantified.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf