Ändra sökning
Avgränsa sökresultatet
1 - 7 av 7
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Hellwig, Johannes
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Karlsson, Rose Marie Pernilla
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Pettersson, Torbjörn
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi. KTH, Skolan för kemivetenskap (CHE), Centra, Wallenberg Wood Science Center.
    Measuring elasticity of wet cellulose beads with an AFM colloidal probe using a linearized DMT model2017Ingår i: Analytical Methods, ISSN 1759-9660, E-ISSN 1759-9679, Vol. 9, nr 27, s. 4019-4022Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The mechanical properties of wet cellulose are investigated using an atomic force microscope AFM and calculated using a linearized DMT model. Measurements were performed using a model system of gel beads made of cellulose with different charge densities, which show a high impact on the mechanical properties of the cellulose in wet state.

  • 2.
    Hellwig, Johannes
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    López Durán, Veronica
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Pettersson, Torbjörn
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Measuring elasticity of wet cellulose fibres with AFM using indentation and a linearized Hertz model2018Ingår i: Analytical Methods, ISSN 1759-9660, E-ISSN 1759-9679, Vol. 10, nr 31Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The mechanical properties of different pulp fibres in liquid were measured using an atomic force microscope. Specifically a custom-made sample holder was used to indent the fibre surface, without causing any motion, and the Young's modulus was calculated from the indentation using a linearized Hertz model.

  • 3.
    Herrera, A.
    et al.
    Charite Univ Med Berlin, Julius Wolff Inst, Augustenburger Pl 1, D-13353 Berlin, Germany.;Charite Univ Med Berlin, Berlin Brandenburg Ctr, Augustenburger Pl 1, D-13353 Berlin, Germany.;Charite Univ Med Berlin, Sch Regenerat Therapies, Augustenburger Pl 1, D-13353 Berlin, Germany.;Tech Univ Berlin, Str 17,Juni 135, D-10623 Berlin, Germany..
    Hellwig, Johannes
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. Tech Univ Berlin, Str 17,Juni 135, D-10623 Berlin, Germany..
    Leemhuis, H.
    Matricel GmbH, Kaiserstr 100, D-52134 Herzogenrath, Germany..
    von Klitzing, R.
    Tech Univ Berlin, Str 17,Juni 135, D-10623 Berlin, Germany.;Tech Univ Darmstadt, Alarich Weiss Str 10, D-64287 Darmstadt, Germany..
    Heschel, I
    Matricel GmbH, Kaiserstr 100, D-52134 Herzogenrath, Germany..
    Duda, G. N.
    Charite Univ Med Berlin, Julius Wolff Inst, Augustenburger Pl 1, D-13353 Berlin, Germany.;Charite Univ Med Berlin, Berlin Brandenburg Ctr, Augustenburger Pl 1, D-13353 Berlin, Germany.;Charite Univ Med Berlin, Sch Regenerat Therapies, Augustenburger Pl 1, D-13353 Berlin, Germany.;Charite Univ Med Berlin, Univ Med Berlin, Ctr Musculoskeletal Surg, Augustenburger Pl 1, D-13353 Berlin, Germany..
    Petersen, A.
    Charite Univ Med Berlin, Julius Wolff Inst, Augustenburger Pl 1, D-13353 Berlin, Germany.;Charite Univ Med Berlin, Berlin Brandenburg Ctr, Augustenburger Pl 1, D-13353 Berlin, Germany.;Charite Univ Med Berlin, Sch Regenerat Therapies, Augustenburger Pl 1, D-13353 Berlin, Germany..
    From macroscopic mechanics to cell-effective stiffness within highly aligned macroporous collagen scaffolds2019Ingår i: Materials science & engineering. C, biomimetic materials, sensors and systems, ISSN 0928-4931, E-ISSN 1873-0191, Vol. 103, artikel-id 109760Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In the design of macroporous biomaterial scaffolds, attention is payed predominantly to the readily accessible macroscopic mechanical properties rather than to the mechanical properties experienced by the cells adhering to the material. However, the direct cell mechanical environment has been shown to be of special relevance for biological processes such as proliferation, differentiation and extracellular matrix formation both in vitro and in vivo. In this study we investigated how individual architectural features of highly aligned macroporous collagen scaffolds contribute to its mechanical properties on the macroscopic vs. the microscopic scale. Scaffolds were produced by controlled freezing and freeze-drying, a method frequently used for manufacturing of macroporous biomaterials. The individual architectural features of the biomaterial were carefully characterized to develop a finite element model (FE-model) that finally provided insights in the relation between the biomaterial's mechanical properties on the macro-scale and the properties on the micro-scale, as experienced by adhering cells. FE-models were validated by experimental characterization of the scaffolds, both on the macroscopic and the microscopic level, using mechanical compression testing and atomic force microscopy. As a result, a so-called cell-effective stiffness of these non-trivial scaffold architectures could be predicted for the first time. A linear dependency between the macroscopic scaffold stiffness and the cell-effective stiffness was found, with the latter being consistently higher by a factor of 6.4 +/- 0.6. The relevance of the cell-effective stiffness in controlling progenitor cell differentiation was confirmed in vitro. The obtained information about the cell-effective stiffness is of particular relevance for the early stages of tissue regeneration, when the cells first populate and interact with the biomaterial. Beyond the specific biomaterial investigated here, the introduced method is transferable to other complex biomaterial architectures. Design-optimization in 3D macroporous scaffolds that are based on a deeper understanding of the mechanical environment provided to the cells will help to enhance biomaterial-based tissue regeneration approaches.

  • 4.
    Karlsson, Rose-Marie Pernilla
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Larsson, Per Tomas
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. RISE Bioecon, Box 5604, S-11486 Stockholm, Sweden.
    Yu, Shun
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Pendergraph, Samuel Allen
    RISE Bioecon, Box 5604, S-11486 Stockholm, Sweden..
    Pettersson, Torbjörn
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Hellwig, Johannes
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Carbohydrate gel beads as model probes for quantifying non-ionic and ionic contributions behind the swelling of delignified plant fibers2018Ingår i: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 519, s. 119-129Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Macroscopic beads of water-based gels consisting of uncharged and partially charged beta-(1,4)-D-glucan polymers were developed to be used as a novel model material for studying the water induced swelling of the delignified plant fiber walls. The gel beads were prepared by drop-wise precipitation of solutions of dissolving grade fibers carboxymethylated to different degrees. The internal structure was analyzed using Solid State Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance and Small Angle X-ray Scattering showing that the internal structure could be considered a homogeneous, non-crystalline and molecularly dispersed polymer network. When beads with different charge densities were equilibrated with aqueous solutions of different ionic strengths and/or pH, the change in water uptake followed the trends expected for weak polyelectrolyte gels and the trends found for cellulose-rich fibers. When dried and subsequently immersed in water the beads also showed an irreversible loss of swelling depending on the charge and type of counter-ion which is commonly also found for cellulose-rich fibers. Taken all these results together it is clear that the model cellulose-based beads constitute an excellent tool for studying the fundamentals of swelling of cellulose rich plant fibers, aiding in the elucidation of the different molecular and supramolecular contributions to the swelling.

  • 5.
    López Durán, Veronica
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Hellwig, Johannes
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Larsson, Per A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Effect of Chemical Functionality on the Mechanical and Barrier Performance of Nanocellulose Films2018Ingår i: ACS APPLIED NANO MATERIALS, ISSN 2574-0970, Vol. 1, nr 4, s. 1959-1967Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In the present work, we have partially modified fibrils chemically to eate a shell of derivatized cellulose that surrounds the crystalline re of native cellulose. Through the different modifications, we aimed creating a toolbox to enable the properties of CNF materials and terials containing CNFs to be tuned to meet specific material demands. total, nine different chemical modifications using different ueous-based procedures were used as chemical pretreatments before CNF oduction through homogenization. Eight of these modifications included riodate oxidation with an average of 27% of the anhydroglucose units the cellulose chain being cleaved into dialdehydes. The presence of dehydes then facilitated a conversion to other functional groups.

  • 6. López Durán, Verónica
    et al.
    Hellwig, Johannes
    Larsson, P. Tomas
    Wågberg, Lars
    KTH, Tidigare Institutioner (före 2005), Fiber- och polymerteknologi.
    Larsson, Per A.
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation.
    Effect of chemical functionality on the mechanical and barrier performance of all-cellulose compositesManuskript (preprint) (Övrigt vetenskapligt)
  • 7.
    Pettersson, Torbjörn
    et al.
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Hellwig, Johannes
    KTH, Skolan för kemivetenskap (CHE), Fiber- och polymerteknologi.
    Gustafsson, Per-Johan
    Stenstrom, Stig
    Measurement of the flexibility of wet cellulose fibres using atomic force microscopy2017Ingår i: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 24, nr 10, s. 4139-4149Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Flexibility and modulus of elasticity data for two types of wet cellulose fibres using a direct force-displacement method by means of AFM are reported for never dried wet fibres immersed in water. The flexibilities for the bleached softwood kraft pulp (BSW) fibres are in the range of 4-38 x 10(12) N-1 m(-2) while the flexibilities for the thermomechanical pulp (TMP) fibres are about one order of magnitude lower. For BSW the modulus of elasticity ranges from 1 to 12 MPa and for TMP between 15-190 MPa. These data are lower than most other available pulp fibre data and comparable to a soft rubber band. Reasons for the difference can be that our measurements with a direct method were performed using never dried fibres immersed in water while other groups have employed indirect methods using pulp with different treatments.

1 - 7 av 7
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf