Endre søk
Begrens søket
1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Akan, Rabia
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
    Parfeniukas, Karolis
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
    Vogt, Carmen
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
    Toprak, M. S.
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
    Vogt, Ulrich
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
    Reaction control of metal-assisted chemical etching for silicon-based zone plate nanostructures2018Inngår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 8, nr 23, s. 12628-12634Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Metal-assisted chemical etching (MACE) reaction parameters were investigated for the fabrication of specially designed silicon-based X-ray zone plate nanostructures using a gold catalyst pattern and etching solutions composed of HF and H2O2. Etching depth, zone verticality and zone roughness were studied as a function of etching solution composition, temperature and processing time. Homogeneous, vertical etching with increasing depth is observed at increasing H2O2 concentrations and elevated processing temperatures, implying a balance in the hole injection and silica dissolution kinetics at the gold-silicon interface. The etching depth decreases and zone roughness increases at the highest investigated H2O2 concentration and temperature. Possible reasons for these observations are discussed based on reaction chemistry and zone plate design. Optimum MACE conditions are found at HFH2O2 concentrations of 4.7 M:0.68 M and room temperature with an etching rate of ≈0.7 μm min-1, which is about an order of magnitude higher than previous reports. Moreover, our results show that a grid catalyst design is important for successful fabrication of vertical high aspect ratio silicon nanostructures. 

  • 2.
    Larsson, Jakob C.
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
    Vogt, Carmen
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
    Vågberg, William
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    Toprak, Muhammet
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    Dzieran, Johanna
    Arsenian-Henriksson, Marie
    Hertz, Hans
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    High-spatial-resolution x-ray fluorescence tomography with spectrally matched nanoparticles2018Inngår i: Physics in Medicine and Biology, ISSN 0031-9155, E-ISSN 1361-6560, Vol. 63, s. 164001-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Present macroscopic biomedical imaging methods provide either morphology with high spatial resolution (e.g. CT) or functional/molecular information with lower resolution (e.g. PET). X-ray fluorescence (XRF) from targeted nanoparticles allows molecular or functional imaging but sensitivity has so far been insufficient resulting in low spatial resolution, despite long exposure times and high dose. In the present paper, we show that laboratory XRF tomography with metal-core nanoparticles (NPs) provides a path to functional/molecular biomedical imaging with ~100 µm resolution in living rodents. The high sensitivity and resolution rely on the combination of a high-brightness liquid-metal-jet x-ray source, pencil-beam optics, photon-counting energy-dispersive detection, and spectrally matched NPs. The method is demonstrated on mice for 3D tumor imaging via passive targeting of in-house-fabricated molybdenum NPs. Exposure times, nanoparticle dose, and radiation dose agree well with in vivo imaging.

  • 3.
    Li, Yuyang
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
    Shaker, Kian
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
    Larsson, Jakob C.
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
    Vogt, Carmen
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
    Hertz, Hans M.
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
    Toprak, Muhammet S.
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
    A Library of Potential Nanoparticle Contrast Agents for X-Ray Fluorescence Tomography Bioimaging2018Inngår i: Contrast Media & Molecular Imaging, ISSN 1555-4309, E-ISSN 1555-4317, artikkel-id UNSP 8174820Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Nanoparticles (NPs) have been used as contrast agents for several bioimaging modalities. X-ray fluorescence (XRF) tomography can provide sensitive and quantitative 3D detection of NPs. With spectrally matched NPs as contrast agents, we demonstrated earlier in a laboratory system that XRF tomography could achieve high-spatial-resolution tumor imaging in mice. Here, we present the synthesis, characterization, and evaluation of a library of NPs containing Y, Zr, Nb, Rh, and Ru that have spectrally matched K-shell absorption for the laboratory scale X-ray source. The K-shell emissions of these NPs are spectrally well separated from the X-ray probe and the Compton background, making them suitable for the lab-scale XRF tomography system. Their potential as XRF contrast agents is demonstrated successfully in a small-animal equivalent phantom, confirming the simulation results. The diversity in the NP composition provides a flexible platform for a better design and biological optimization of XRF tomography nanoprobes.

  • 4. Mukherjee, S. P.
    et al.
    Gliga, A. R.
    Lazzaretto, B.
    Brandner, B.
    Fielden, Matthew
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    Vogt, Carmen
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
    Newman, L.
    Rodrigues, A. F.
    Shao, W.
    Fournier, P. M.
    Toprak, Muhammet Sadaka
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
    Star, A.
    Kostarelos, K.
    Bhattacharya, K.
    Fadeel, B.
    Graphene oxide is degraded by neutrophils and the degradation products are non-genotoxic2018Inngår i: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 10, nr 3, s. 1180-1188Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Neutrophils were previously shown to digest oxidized carbon nanotubes through a myeloperoxidase (MPO)-dependent mechanism, and graphene oxide (GO) was found to undergo degradation when incubated with purified MPO, but there are no studies to date showing degradation of GO by neutrophils. Here we produced endotoxin-free GO by a modified Hummers' method and asked whether primary human neutrophils stimulated to produce neutrophil extracellular traps or activated to undergo degranulation are capable of digesting GO. Biodegradation was assessed using a range of techniques including Raman spectroscopy, transmission electron microscopy, atomic force microscopy, and mass spectrometry. GO sheets of differing lateral dimensions were effectively degraded by neutrophils. As the degradation products could have toxicological implications, we also evaluated the impact of degraded GO on the bronchial epithelial cell line BEAS-2B. MPO-degraded GO was found to be non-cytotoxic and did not elicit any DNA damage. Taken together, these studies have shown that neutrophils can digest GO and that the biodegraded GO is non-toxic for human lung cells.

1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf