Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Fan, Lizhou
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry. KTH Royal Inst Technol, Dept Chem, S-10044 Stockholm, Sweden..
    Zhang, Peili
    DUT, DUT KTH Joint Educ, Inst Artificial Photosynth, State Key Lab Fine Chem, Dalian 116024, Peoples R China.;DUT, Res Ctr Mol Devices, Dalian 116024, Peoples R China..
    Zhang, Biaobiao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry. KTH Royal Inst Technol, Dept Chem, S-10044 Stockholm, Sweden..
    Daniel, Quentin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry. KTH Royal Inst Technol, Dept Chem, S-10044 Stockholm, Sweden..
    Timmer, Brian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry. KTH Royal Inst Technol, Dept Chem, S-10044 Stockholm, Sweden..
    Zhang, Fuguo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry. KTH Royal Inst Technol, Dept Chem, S-10044 Stockholm, Sweden..
    Sun, Licheng
    KTH, School of Chemical Science and Engineering (CHE), Centres, Centre of Molecular Devices, CMD. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry. KTH Royal Inst Technol, Dept Chem, S-10044 Stockholm, Sweden.;DUT, DUT KTH Joint Educ, Inst Artificial Photosynth, State Key Lab Fine Chem, Dalian 116024, Peoples R China.;DUT, Res Ctr Mol Devices, Dalian 116024, Peoples R China..
    3D Core-Shell NiFeCr Catalyst on a Cu Nanoarray for Water Oxidation: Synergy between Structural and Electronic Modulation2018In: ACS ENERGY LETTERS, ISSN 2380-8195, Vol. 3, no 12, p. 2865-2874Article in journal (Refereed)
    Abstract [en]

    Low cost transition metal-based electrocatalysts for water oxidation and understanding their structure-activity relationship are greatly desired for clean and sustainable chemical fuel production. Herein, a core-shell (CS) NiFeCr metal/metal hydroxide catalyst was fabricated on a 3D Cu nanoarray by a simple electrodeposition-activation method. A synergistic promotion effect between electronic structure modulation and nanostructure regulation was presented on a CS-NiFeCr oxygen evolution reaction (OER) catalyst: the 3D nanoarchitecture facilitates the mass transport process, the in situ formed interface metal/metal hydroxide heterojunction accelerates the electron transfer, and the electronic structure modulation by Cr incorporation improves the reaction kinetics. Benefiting from the synergy between structural and electronic modulation, the catalyst shows excellent activity toward water oxidation under alkaline conditions: overpotential of 200 mV at 10 mA/cm(2) current density and Tafel slope of 28 mV/dec. This work opens up a new window for understanding the structure-activity relationship of OER catalysts and encourages new strategies for development of more advanced OER catalysts.

  • 2.
    Zhang, Biaobiao
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Valvo, M.
    Fan, Lizhou
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Daniel, Quentin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Zhang, Peili
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Wang, Linqin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Electrocatalytic Water Oxidation Promoted by 3 D Nanoarchitectured Turbostratic Δ-MnOx on Carbon Nanotubes2017In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 10, no 22, p. 4472-4478Article in journal (Refereed)
    Abstract [en]

    The development of manganese-based water oxidation electrocatalysts is desirable for the production of solar fuels, as manganese is earth-abundant, inexpensive, non-toxic, and has been employed by the Photosystem II in nature for a billion years. Herein, we directly constructed a 3 D nanoarchitectured turbostratic δ-MnOx on carbon nanotube-modified nickel foam (MnOx/CNT/NF) by electrodeposition and a subsequent annealing process. The MnOx/CNT/NF electrode gives a benchmark catalytic current density (10 mA cm−2) at an overpotential (η) of 270 mV under alkaline conditions. A steady current density of 19 mA cm−2 is obtained during electrolysis at 1.53 V for 1.0 h. To the best of our knowledge, this work represents the most efficient manganese-oxide-based water oxidation electrode and demonstrates that manganese oxides, as a structural and functional model of oxygen-evolving complex (OEC) in Photosystem II, can also become comparable to those of most Ni- and Co-based catalysts.

  • 3.
    Zhang, Peili
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Li, L.
    Nordlund, D.
    Chen, Hong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Fan, Lizhou
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Zhang, Biaobiao
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Sheng, Xia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Daniel, Quentin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Sun, Licheng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.
    Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation2018In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, no 1, article id 381Article in journal (Refereed)
    Abstract [en]

    Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm-2. The core-shell NiFeCu electrode exhibits pH-dependent oxygen evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf