Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Cha, Yingying
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Tu, Minghui
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Bergstedt, Edwin
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Carlsson, Peter
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Lyu, Yezhe
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi. KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.).
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.).
    Silvergren, Sanna
    Elmgren, Max
    Hurkmans, Jennie
    Norman, Michael
    Ombordmätningar av luftburna partiklar i X60 samt på citybanans plattformar2018Report (Other (popular science, discussion, etc.))
  • 2.
    Cha, Yingying
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Tu, Minghui
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Elmgren, Max
    SLB-analys, Environment and Health Administration, Stockholm, Sweden.
    Silvergren, Sanna
    SLB-analys, Environment and Health Administration, Stockholm, Sweden.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Factors affecting the exposure of passengers, service staff and train drivers inside trains to airborne particles2018In: Environmental Research, ISSN 0013-9351, E-ISSN 1096-0953, Vol. 166, p. 16-24Article in journal (Refereed)
    Abstract [en]

    This study investigated train air conditioning filters, interior ventilation systems, tunnel environments and platform air quality as factors affecting the concentrations of airborne particles inside trains and provides information on the exposure of passengers, train drivers and service staff to particles. Particle sampling was done inside the passenger cabin, the driver cabin and the service staff cabin during on-board measurement campaigns in 2016 and 2017. The results show that interior ventilation plays a key role in maintaining cleaner in-train air. Noticeable increases in PM10 and PM2.5 levels were observed for all of the measured cabins when the train was running in the newly opened tunnel. The increases occurred when the doors of the passenger cabin and the service staff cabin were open at underground stations. The door to the driver cabin, which remained closed for the entire measurement period, acted as a filter for coarse particles (PM2.5–10). The highest particle exposure occurred in the passenger cabin, followed by the service staff cabin, while the driver had the lowest exposure. The highest deposition dose occurs for the service staff and the lowest for commuters.

  • 3.
    Cha, Yingying
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Tu, Minghui
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Elmgren, Max
    Silvergren, Sanna
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Variation in Airborne Particulate Levels at a Newly Opened Underground Railway Station2019In: Aerosol and Air Quality Research, ISSN 1680-8584, E-ISSN 2071-1409, Vol. 19, no 4, p. 737-748Article in journal (Refereed)
    Abstract [en]

    The construction of a new railway tunnel for commuter trains in Stockholm was completed in 2017. It included two modern stations (Odenplan and Stockholm City) with platform screen doors (PSD) and one old station (Stockholm Sodra) without PSDs. This study evaluates the concentrations of airborne particulates at the new Odenplan station, focusing on the effects of traffic operation, system age and train movement. For comparison, the other two stations in the tunnel and an above-ground railway station (Solna) were also investigated. The new platform was clean prior to opening for traffic (the average concentration of PM10 and PM2.5 was 12 and 2 mu g m(-3), respectively). Substantial increases in the PM10 and PM2.5 levels were observed after it came into service, with the average concentrations increasing to 120 and 30 mu g m(-3) after 1 week and then to 175 and 35 mu g m(-3) after 3 months of operation. The train movement factor (traffic frequency and train stopping period) was found to have a strong effect on the coarse-sized particle concentrations (0.3-10 mu m). Comparable levels of PM10 and PM2.5 were measured at both the new Odenplan station and the old station, where the amount of traffic was similar. For the other new station, Stockholm City, where traffic was only half as frequent, the PM10 and PM2.5 levels were substantially lower.

  • 4.
    Cha, Yingying
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Tu, Minghui
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Elmgren, Max
    SLB-analys, Environment and Health Administration, Stockholm, Sweden.
    Silvergren, Sanna
    SLB-analys, Environment and Health Administration, Stockholm, Sweden.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Variation of airborne particulate levels in a newly built railway tunnel2018In: Aerosol and Air Quality Research, ISSN 1680-8584, E-ISSN 2071-1409Article in journal (Other academic)
    Abstract [en]

    The construction of a new railway tunnel for commuter trains in Stockholm was completed in 2017. It included two modern stations (Odenplan and Stockholm City) with platform screen doors (PSD) and one old station (Stockholm Södra) without PSDs. This study evaluates the concentrations of airborne particulates for the new stations, focussing on the effects of traffic operation, system age and train movement. For comparison, the other old station in the tunnel and an above-ground railway station (Solna) were also investigated. The new Odenplan platform was clean before its opening for traffic (12 and 2 μg/m3 for average PM10 and PM2.5, respectively). Substantial increases in the PM10 and PM2.5 concentrations were observed after it came into service. The average levels of PM10 and PM2.5 increased to 120 and 30 μg/m3 after one week of operation, and increased again to 175 and 35 μg/m3 after 3 months. The train movement factor (traffic frequency and train stop period) was found to have a strong effect on the particle concentrations of coarse sizes (0.3–10 μm). Comparable levels of PM10 and PM2.5 were measured at both the new station and the old station where the traffic frequency was similar. For the other new station, which had half the traffic frequency due to the station design with two separate platforms, the PM10 and PM2.5 levels were substantially lower.

  • 5.
    Lyu, Yezhe
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Wahlström, Jens
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Tu, Minghui
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    A Friction, Wear and Emission Tribometer Study of Non-Asbestos Organic Pins Sliding Against AlSiC MMC Discs2018In: Tribology in Industry, ISSN 0354-8996, Vol. 40, no 2, p. 274-282Article in journal (Refereed)
    Abstract [en]

    The friction, wear and particle emission from an AlSiC MMC brake disc/non-asbestos organic brake pad system is studied using a pin-on-disc tribometer. The results show that this unconventional AlSiC MMC brake disc system presents friction performance as good as a conventional cast iron brake disc system. During braking, brake pad materials are transferred to the brake disc surface to form a protective third body tribo-layer, resulting in a negative specific wear rate of the brake disc. A higher contact load is likely to make it easier to generate the tribo-layer. The tribo-layer also seems to depend on the disc surface grinding features and the contact temperature during braking. By reusing an AlSiC MMC disc where the tribo-layer is already formed, the airborne emission in terms of mass is about 50% lower and in terms of number about the same as the conventional brake contact pair under a similar braking condition. Further full-scale studies are suggested to determine the validity of the findings.

  • 6.
    Olofsson, Ulf
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Tu, Minghui
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.).
    Nosko, Oleksii
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Lyu, Yezhe
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.).
    Dizdar, Senad
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.). Höganäs AB, R&D, 263 83 Höganäs, Sweden.
    A pin-on-disc study of airborne wear particle emissions from studded tyre on concrete road contacts2018In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 410-411, p. 165-172Article in journal (Refereed)
    Abstract [en]

    Studded tyres wear surfaces of winter roads, generating inhalable airborne particles. In this study, four concrete road materials and two stud geometries were investigated in terms of wear, road material hardness and airborne particle concentration. The sliding contact between studded tyres and road materials was studied using a pin-on-disc machine in a clean chamber. The results show that the normal load and the stud size have a large influence on the wear and particle emission. It was found that the wear and particle concentration are inversely proportional to the hardness of the aggregate in the road material and proportional to the sliding distance. The particle size distribution has peaks at 0.2 µm, 1 µm and 2 µm. 

  • 7. Silvergren, Sanna
    et al.
    Olofsson, Ulf
    KTH, School of Engineering Sciences (SCI), Centres, The KTH Railway Group. KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.).
    Andersson, Martin
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Lyu, Yezhe
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi. KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.).
    Norman, Michael
    Sanchez, Gonzalo Garcia
    Sjövall, Billy
    Tu, Minghui
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Ombordmätningar av partiklar och koldioxid i X60B förarhytter2017Report (Other (popular science, discussion, etc.))
  • 8.
    Tu, Minghui
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi. KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.).
    Cha, Yingying
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Wahlström, Jens
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.).
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Towards a two-part train traffic emission factors model for airborne wear particlesManuscript (preprint) (Other academic)
  • 9.
    Tu, Minghui
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi. KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.).
    Cha, Yingying
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Wahlström, Jens
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.).
    Olofsson, Ulf
    KTH, Superseded Departments (pre-2005), Machine Design.
    Towards a two-part train traffic emission factors model for airborne wear particlesIn: Transportation Research Part D: Transport and Environment, ISSN 1361-9209, E-ISSN 1879-2340Article in journal (Other academic)
  • 10.
    Tu, Minghui
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.).
    Cha, Yingying
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Tribologi.
    Wahlström, Jens
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.).
    Olofsson, Ulf
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.).
    Towards a two-part train traffic emissions factor model for airborne wear particles2019In: Transportation Research Part D: Transport and Environment, ISSN 1361-9209, E-ISSN 1879-2340, Vol. 67, p. 67-76Article in journal (Refereed)
    Abstract [en]

    In 2017 a new railway tunnel containing two stations opened in Stockholm, Sweden. A series of field measurements were carried out on the platforms in this tunnel before and after it was opened for normal traffic. These measurements were used to investigate the contribution of airborne particle emissions from wear processes to total train emissions. This field data was used to develop a two-part train traffic emission factor model for PM10. The two parts are the accumulative effect term (relating to operating distance such as wheel-rail contact and overhead electric line sliding contact) and a brake effect term (relating to the number of braking operations such as brake disc and brake pad contact). The results show that operating a single trial train at a higher than normal frequency on an otherwise empty platform increases the platform particulate concentration until the concentration reaches a steady value. The model suggests that brake emissions account for about 50% of the total emissions measured in the tunnels.

1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf