Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Berglund, Lars
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH Royal Inst Technol, WWSC, Fibre & Polymer Technol, Stockholm, Sweden..
    Yang, Xuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH Royal Inst Technol, WWSC, Fibre & Polymer Technol, Stockholm, Sweden..
    Berthold, Fredrik
    RISE Bioecon, Stockholm, Sweden..
    Holocellulose fibers: combining mechanical performance and optical transmittance2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 2.
    Fu, Qiliang
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Yan, Min
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Jungstedt, Erik
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Yang, Xuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Li, Yuanyuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Transparent plywood as a load-bearing and luminescent biocomposite2018In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 164, p. 296-303Article in journal (Refereed)
    Abstract [en]

    Transparent wood (TW) structures in research studies were either thin and highly anisotropic or thick and isotropic but weak. Here, transparent plywood (TPW) laminates are investigated as load-bearing biocomposites with tunable mechanical and optical performances. Structure-property relationships are analyzed. The plies of TPW were laminated with controlled fiber directions and predetermined stacking sequence in order to control the directional dependence of modulus and strength, which would give improved properties in the weakest direction. Also, the angular dependent light scattering intensities were investigated and showed more uniform distribution. Luminescent TPW was prepared by incorporation of quantum dots (QDs) for potential lighting applications. TPW can be designed for large-scale use where multiaxial load-bearing performance is combined with new optical functionalities.

  • 3.
    Koskela, Salla
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wang, Shennan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Xu, Dingfeng
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Yang, Xuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Li, Kai
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    McKee, Lauren S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Bulone, Vincent
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Zhou, Qi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Lytic polysaccharide monooxygenase (LPMO) mediated production of ultra-fine cellulose nanofibres from delignified softwood fibres2019In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 21, no 21, p. 5924-5933Article in journal (Refereed)
    Abstract [en]

    The production of cellulose nanofibres (CNFs) typically requires harsh chemistry and strong mechanical fibrillation, both of which have negative environmental impacts. A possible solution is offered by lytic polysaccharide monooxygenases (LPMOs), oxidative enzymes that boost cellulose fibrillation. Although the role of LPMOs in oxidative modification of cellulosic substrates is rather well established, their use in the production of cellulose nanomaterials is not fully explored, and the effect of the carbohydrate-binding module (CBM) on nanofibrillation has not yet been reported. Herein, we studied the activity of two LPMOs, one of which was appended to a CBM, on delignified softwood fibres for green and energy-efficient production of CNFs. The CNFs were used to prepare cellulose nanopapers, and the structure and properties of both nanofibres and nanopapers were determined. Both enzymes were able to facilitate nanocellulose fibrillation and increase colloidal stability of the produced CNFs. However, the CBM-lacking LPMO was more efficient in introducing carboxyl groups (0.53 mmol/g) on the cellulose fibre surfaces and releasing CNFs with thinner width (4.3 ± 1.5 nm) from delignified spruce fibres than the modular LPMO (carboxylate content of 0.38 mmol/g and nanofibre width of 6.7± 2.5 nm through LPMO pretreatment followed by mild homogenisation. The prepared nanopapers showed improved mechanical properties (tensile strength of 262 MPa, and modulus of 16.2 GPa) compared to conventional CNFs preparation methods, demonstrating the potential of LPMOs as green alternatives for cellulose nanomaterials preparation.

  • 4.
    Koskela, Salla
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Wang, Shennan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Yang, Xuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Li, Kai
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Srivastava, Vaibhav
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    McKee, Lauren S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Bulone, Vincent
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Zhou, Qi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Glycoscience.
    Enzyme-assisted preparation of nanocellulose from wood holocellulose fibers2019Other (Other academic)
  • 5.
    Yang, Xuan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH Royal institute of technology.
    Eco-friendly Holocellulose Materials for Mechanical Performance and Optical Transmittance2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Cellulosic materials can be sustainable replacements for fossil-based plastics; yet for some applications improvements are needed for mechanical properties, optical transmittance and eco-friendly characteristics. In this thesis, holocellulose materials are investigated for this purpose, and processing-structure-property relationships are discussed. Molded fibers, without added polymer binder, is of particular interest for semi-structural applications, where facile recycling is possible with highly preserved fiber properties.

    Mild delignification is carried out to obtain ramie fibers, spruce holocellulose fibers and holocellulose nanofibrils. The chemical composition, molar mass, crystallinity, fiber length/width, and single fiber strength are measured. Fibers and fibrils show well-preserved native structure. Using water-based hot-pressing, fibers and fibrils are processed into different fiber network materials, including paper structures of 50% porosity, high density molded fibers, and high density nanopaper films. Biocomposites are obtained through methyl methacrylate impregnation and polymerization with molded fibers as reinforcing networks. Fiber orientation is quantified using 2D X-ray diffraction, mechanical properties are determined by tensile testing, and optical properties are measured by transmittance/haze tests in an integrating sphere. Holocellulose materials show much superior mechanical properties and optical transmittance to comparable materials based on industrially available kraft fiber grades. Strong effects from micro-, nano- and molecular scale structures are observed and discussed.

    The colloidal stability, redispersibility, and surface modification of holocellulose nanofibrils, as well as recycling and 3D-shaping performance of paper-like structures are investigated. Eco-friendly characteristics include high fiber yield, reduced need for chemical modification and excellent recycling performance with reduced embodied energy in the final material. The enhanced performance of holocellulose materials, compared with materials from kraft fibers, are related to the effects of well-preserved cellulose and hemicellulose structures, as well as structural homogeneity at both molecular, nanofibril and fiber length scales.

    The full text will be freely available from 2020-11-19 09:42
  • 6.
    Yang, Xuan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Berglund, Lars
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Oriented all-cellulose film based on ramie fiber with high mechanical property and transparency2017In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 253Article in journal (Other academic)
  • 7.
    Yang, Xuan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH Royal institute of technology.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Recycling without Fiber Degradation: Strong Paper Structures for 3D Forming Based on Nanostructurally Tailored Wood Holocellulose FibersManuscript (preprint) (Other academic)
  • 8.
    Yang, Xuan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berthold, Fredrik
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    High-Density Molded Cellulose Fibers and Transparent Biocomposites Based on Oriented Holocellulose2019In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 11, no 10, p. 10310-10319Article in journal (Refereed)
    Abstract [en]

    Ecofriendly materials based on well-preserved and nanostructured wood cellulose fibers are investigated for the purpose of load-bearing applications, where optical transmittance may be advantageous. Wood fibers are subjected to mild delignification, flow orientation, and hot-pressing to form an oriented material of low porosity. The biopolymer composition of the fibers is determined. Their morphology is studied by scanning electron microscopy, cellulose orientation is quantified by X-ray diffraction, and the effect of beating is investigated. Hot-pressed networks are impregnated by a methyl methacrylate monomer and polymerized to form thermoplastic wood fiber/poly(methyl methacrylate) biocomposites. Tensile tests are performed, as well as optical transmittance measurements. Structure-property relationships are discussed. High-density molded fibers from holocellulose have mechanical properties comparable with nanocellulose materials and are recyclable. The thermoplastic matrix biocomposites showed superior mechanical properties (Young's modulus of 20 GPa and ultimate strength of 310 MPa) at a fiber volume fraction of 52%, with high optical transmittance of 90%. The study presents a scalable approach for strong, stiff, and transparent molded fibers/biocomposites.Ecofriendly materials based on well-preserved and nanostructured wood cellulose fibers are investigated for the purpose of load-bearing applications, where optical transmittance may be advantageous. Wood fibers are subjected to mild delignification, flow orientation, and hot-pressing to form an oriented material of low porosity. The biopolymer composition of the fibers is determined. Their morphology is studied by scanning electron microscopy, cellulose orientation is quantified by X-ray diffraction, and the effect of beating is investigated. Hot-pressed networks are impregnated by a methyl methacrylate monomer and polymerized to form thermoplastic wood fiber/poly(methyl methacrylate) biocomposites. Tensile tests are performed, as well as optical transmittance measurements. Structure-property relationships are discussed. High-density molded fibers from holocellulose have mechanical properties comparable with nanocellulose materials and are recyclable. The thermoplastic matrix biocomposites showed superior mechanical properties (Young's modulus of 20 GPa and ultimate strength of 310 MPa) at a fiber volume fraction of 52%, with high optical transmittance of 90%. The study presents a scalable approach for strong, stiff, and transparent molded fibers/biocomposites.

  • 9.
    Yang, Xuan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berthold, Fredrik
    RISE Res Inst Sweden, Master Samuelsgatan 60, SE-11121 Stockholm, Sweden..
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Preserving Cellulose Structure: Delignified Wood Fibers for Paper Structures of High Strength and Transparency2018In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 19, no 7, p. 3020-3029Article in journal (Refereed)
    Abstract [en]

    To expand the use of renewable materials, paper products with superior mechanical and optical properties are needed. Although beating, bleaching, and additives are known to improve industrially produced Kraft pulp papers, properties are limited by the quality of the fibers. While the use of nanocellulose has been shown to significantly increase paper properties, the current cost associated with their production has limited their industrial relevance. Here, using a simple mild peracetic acid (PAA) delignification process on spruce, we produce hemicellulose-rich holocellulose fibers (28.8 wt %) with high intrinsic strength (1200 MPa for fibers with microfibrillar angle smaller than 10 degrees). We show that PAA treatment causes less cellulose/hemicellulose degradation and better preserves cellulose nanostructure in comparison to conventional Kraft pulping. High-density holocellulose papers with superior mechanical properties (Young's modulus of 18 GPa and ultimate strength of 195 MPa) are manufactured using a water-based hot-pressing process, without the use of beating or additives. We propose that the preserved hemicelluloses act as "glue" in the interfiber region, improving both mechanical and optical properties of papers. Holocellulose fibers may be affordable and applicable candidates for making special paper/composites where high mechanical performance and/or optical transmittance are of interest.

  • 10.
    Yang, Xuan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Reid, Michael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Olsén, Peter
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Eco-Friendly Cellulose Nanofibrils Designed by Nature: Effects from Preserving Native StateManuscript (preprint) (Other academic)
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf