Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Jahn, Michael
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. KTH, Centres, Science for Life Laboratory, SciLifeLab. K.
    Vialas, Vital
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Karlsen, Jan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Maddalo, Gianluca
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Edfors, Fredrik
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Forsström, Björn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Käll, Lukas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hudson, Elton P.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Growth of Cyanobacteria Is Constrained by the Abundance of Light and Carbon Assimilation Proteins2018In: Cell reports, ISSN 2211-1247, E-ISSN 2211-1247, Vol. 25, no 2, p. 478-+Article in journal (Refereed)
    Abstract [en]

    Cyanobacteria must balance separate demands for energy generation, carbon assimilation, and biomass synthesis. We used shotgun proteomics to investigate proteome allocation strategies in the model cyanobacterium Synechocystis sp. PCC 6803 as it adapted to light and inorganic carbon (C-i) limitation. When partitioning the proteome into seven functional sectors, we find that sector sizes change linearly with growth rate. The sector encompassing ribosomes is significantly smaller than in E. coli, which may explain the lower maximum growth rate in Synechocystis. Limitation of light dramatically affects multiple proteome sectors, whereas the effect of C-i limitation is weak. Carbon assimilation proteins respond more strongly to changes in light intensity than to C-i. A coarse-grained cell economy model generally explains proteome trends. However, deviations from model predictions suggest that the large proteome sectors for carbon and light assimilation are not optimally utilized under some growth conditions and may constrain the proteome space available to ribosomes.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf