Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Earon, Robert
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Olofsson, Bo
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Integrating storage and spatial variability into regional groundwater balances: Moving towards water security in hard rock coastal areasManuscript (preprint) (Other academic)
    Abstract [en]

    In terrains with limited soil cover and groundwater storage, groundwater resource management is governed by the spatial nature of storage, recharge and extraction. Local soils may act as important groundwater reservoirs for residents which have no other feasible water supply. A novel groundwater balance methodology is presented which accounts for the spatial distribution of storage and extraction. Existing topographical and geological databases as well as well data were used to construct a conceptual model of the groundwater system, assuming stratigraphy based on typical geology. The method is implemented in a geographic information systems environment and allows for variable climate and land use scenarios.

    Several scenarios were examined with this method, demonstrating that on a regional scale average reservoir volumes meet demand but at the local levels depletion of reservoirs may be experienced. Groundwater level drawdown in excess of 50% of the projected reservoir storage were seen, particularly near the coast. Soil-filled valleys may act as local hydraulic barriers, preventing contamination from saline water provided no direct hydraulic connection is present. The method demonstrates the importance of a spatial approach in managing groundwater resources, and shows promise as a tool for planners in increasing water security.

  • 2.
    Earon, Robert
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    Olofsson, Bo
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering.
    The importance of a spatial approach to water resources management in heterogeneous regionsManuscript (preprint) (Other academic)
    Abstract [en]

    Limited groundwater storage in recently glaciated terrains with frequent hard, crystalline bedrock outcrops poses challenges for groundwater resources management. Due to often-limited economic resources allocated to groundwater investigations in areas where drinking water is primarily supplied by private wells, heuristic solutions such as groundwater balances with built-in limitations of storage may serve a vital role in improving water security. This study investigates the use of a conceptual groundwater balance model and the use of a conceptual-statistical reservoir vulnerability model with this aim. A limited storage, GIS-based groundwater balance model using existing databases was applied to an area outside of Stockholm, Sweden with existing groundwater level measurement data. The spatial model showed improved performance over existing S-Hype model estimates of groundwater levels currently used in groundwater resources management by the Geological Survey of Sweden, even without local calibration. Differences between two wells with time series data showed evidence of strong influence due to in-situ geological conditions. Groundwater vulnerability estimates correlated significantly with chloride measurements from an existing chemistry database. The performance of the conceptually-based spatial groundwater balance supports the use of the approach as an aid for municipal planners and decision-makers in moving towards sustainable groundwater resources planning and improving water security in areas with limited storage and a large number of dispersed, private wells.

  • 3.
    Rasul, Hedi
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering. Royal Inst Technol KTH, Div Land & Water Resources Engn, S-10044 Stockholm, Sweden.;Koya Univ, Dept Civil Engn, Fac Engn, KOY45, Koya, Kurdistan Regio, Iraq..
    Earon, Robert
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering. Royal Inst Technol KTH, Div Land & Water Resources Engn, S-10044 Stockholm, Sweden..
    Olofsson, Bo
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Water and Environmental Engineering. Royal Inst Technol KTH, Div Land & Water Resources Engn, S-10044 Stockholm, Sweden..
    Detecting Seasonal Flow Pathways in Road Structures Using Tracer Tests and ERT2018In: Water, Air and Soil Pollution, ISSN 0049-6979, E-ISSN 1573-2932, Vol. 229, no 11, article id 358Article in journal (Refereed)
    Abstract [en]

    Roads and traffic can be a source of water-bound pollutants, which can percolate through the unsaturated zone to groundwater. Deicing salt is widely used on roads in northern Europe during winter and is usually applied at a time when the temperature is below zero and the soil is partly frozen. Understanding the mechanism by which water-bound pollutants such as deicing salt are transferred from roads to groundwater is highly important for groundwater protection, environmental sustainability and road maintenance. Electrical resistivity tomography (ERT) can be used for tracing the infiltration of deicing salt in different seasons, including the frozen period, as a step towards identifying pollutant infiltration pathways. In this study, a tracer-ERT monitoring method and analytical process was developed and evaluated for use in investigating and demonstrating deicing salt infiltration pathways in road structures in different seasons and weather conditions. The method involves using dissolved sodium chloride as a tracer and monitoring its infiltration using a multi-electrode array system. The tracer tests were performed at the same location in different seasons over a 1-year period. The results indicated high seasonal variation in percolation pattern and flow velocity, with large decreases in December (winter), most likely due to preferential flow paths within the road shoulder. These findings can be applied to other water-soluble pollutants that move from the road surface to groundwater.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf