kth.sePublications
Change search
Refine search result
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Brooke, Robert
    et al.
    Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden.
    Lay, Makara
    Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden;INM- Leibniz Institute for New Materials, Saarbrücken, Germany.
    Jain, Karishma
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Say, Mehmet Girayhan
    Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden.
    Belaineh, Dagmawi
    Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden.
    Wang, Xin
    Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden.
    Håkansson, Karl M. O.
    Bioeconomy & Health, RISE Research Institutes of Sweden, Stockholm, Sweden.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Engquist, Isak
    Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden;Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden.
    Edberg, Jesper
    Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden.
    Berggren, Magnus
    Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden;Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden.
    Nanocellulose and PEDOT:PSS composites and their applications2022In: Polymer Reviews, ISSN 1558-3724, p. 1-41Article in journal (Refereed)
    Abstract [en]

    The need for achieving sustainable technologies has encouraged research on renewable and biodegradable materials for novel products that are clean, green, and environmentally friendly. Nanocellulose (NC) has many attractive properties such as high mechanical strength and flexibility, large specific surface area, in addition to possessing good wet stability and resistance to tough chemical environments. NC has also been shown to easily integrate with other materials to form composites. By combining it with conductive and electroactive materials, many of the advantageous properties of NC can be transferred to the resulting composites. Conductive polymers, in particular poly(3,4-ethylenedioxythiophene:poly(styrene sulfonate) (PEDOT:PSS), have been successfully combined with cellulose derivatives where suspensions of NC particles and colloids of PEDOT:PSS are made to interact at a molecular level. Alternatively, different polymerization techniques have been used to coat the cellulose fibrils. When processed in liquid form, the resulting mixture can be used as a conductive ink. This review outlines the preparation of NC/PEDOT:PSS composites and their fabrication in the form of electronic nanopapers, filaments, and conductive aerogels. We also discuss the molecular interaction between NC and PEDOT:PSS and the factors that affect the bonding properties. Finally, we address their potential applications in energy storage and harvesting, sensors, actuators, and bioelectronics. 

  • 2.
    Erlandsson, Johan
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Marais, Andrew
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Granberg, Hjalmar
    RISE Bioecon, Papermaking & Packaging, Box 5604, SE-11486 Stockholm, Sweden..
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Cross-Linked and Shapeable Porous 3D Substrates from Freeze-Linked Cellulose Nanofibrils2019In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 20, no 2, p. 728-737Article in journal (Refereed)
    Abstract [en]

    Chemically cross-linked highly porous nano cellulose aerogels with complex shapes have been prepared using a freeze-linking procedure that avoids common post activation of cross-linking reactions and freeze-drying. The aerogel shapes ranged from simple geometrical three-dimensional bodies to swirls and solenoids. This was achieved by molding or extruding a periodate oxidized cellulose nanofibril (CNF) dispersion prior to chemical cross-linking in a regular freezer or by reshaping an already prepared aerogel by plasticizing the structure in water followed by reshaping and locking the aerogel into its new shape. The new shapes were most likely retained by new cross-links formed between CNFs brought into contact by the deformation during reshaping. This self-healing ability to form new bonds after plasticization and redrying also contributed to the mechanical resilience of the aerogels, allowing them to be cyclically deformed in the dry state, reswollen with water, and redried with good retention of mechanical integrity. Furthermore, by exploiting the shapeability and available inner structure of the aerogels, a solenoid-shaped aerogel with all surfaces coated with a thin film of conducting polypyrrole was able to produce a magnetic field inside the solenoid, demonstrating electromagnetic properties. Furthermore, by biomimicking the porous interior and stiff exterior of the beak of a toucan bird, a functionalized aerogel was created by applying a 300 mu m thick stiff wax coating on its molded external surfaces. This composite material displayed a 10-times higher elastic modulus compared to that of the plain aerogel without drastically increasing the density. These examples show that it is possible to combine advanced shaping with functionalization of both the inner structure and the surface of the aerogels, radically extending the possible use of CNF aerogels.

  • 3.
    Francon, Hugo
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Benselfelt, Tobias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Granberg, Hjalmar
    RISE Bioecon, Stockholm, Sweden..
    Larsson, Per A.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Wågberg, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, Fibre & Polymer Technol, Stockholm, Sweden..
    3D printable nanocellulose aerogels via a green crosslinking approach and a facile evaporation procedure2019In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal (Other academic)
  • 4.
    Francon, Hugo
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Lopez Duran, Veronica
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Granberg, Hjalmar
    RISE Bioecon, Stockholm, Sweden..
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Novel method for producing formable low-density materials from self-assembled cellulose nanofibrils2018In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 5.
    Francon, Hugo
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Görür, Yunus Can
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Larsson, Per A.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Toward commercial Li-ion graphite anodes with enhanced mechanical and electrochemical properties using binders from chemically modified cellulose fibersManuscript (preprint) (Other academic)
  • 6.
    Francon, Hugo
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Görür, Yunus Can
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Larsson, Per A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Toward Li-ion Graphite Anodes with Enhanced Mechanical and Electrochemical Properties Using Binders from Chemically Modified Cellulose Fibers2022In: ACS Applied Energy Materials, E-ISSN 2574-0962, Vol. 5, no 8, p. 9333-9342Article in journal (Refereed)
    Abstract [en]

    Cellulose nanofibers (CNFs) are bio-sourced nanomaterials, which, after proper chemical modification, exhibit a unique ability to disperse carbon-rich micro- and nanomaterials and can be used in the design of mechanically strong functional nanocomposites. When used in the preparation of graphite anodes for Li-ion batteries, they have the potential to outperform conventional binders such as carboxymethyl cellulose (CMC) and styrene-butadiene rubber (SBR) both electrochemically and mechanically. In this study, cellulose-rich fibers were subjected to three different chemical modifications (including carbonyl-, carboxyl-, and aldehyde-functionalization) to facilitate their fibrillation into CNFs during the preparation of aqueous slurries of graphite and carbon black. Using these binders, graphite anodes were prepared through conventional blade coating. Compared to CMC/SBR reference anodes, all anodes prepared with modified cellulosic fibers as binders performed better in the galvanostatic cycling experiments and in the mechanical cohesion tests they were subjected to. Among them, the aldehyde- and carboxyl-rich fibers performed the best and resulted in a 10% increase in specific capacity with a simultaneous two- and three-fold increase of the electrode material's stress-at-failure and strain-at-break, respectively. In-depth characterizations attributed these results to the distinctive nanostructure and surface chemistry of the composites formed between graphite and these fiber-based binders. 

  • 7.
    Francon, Hugo
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wang, Zhen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Marais, Andrew
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Mystek, Katarzyna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Piper, Andrew
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Granberg, Hjalmar
    RISE Innventia AB, Papermaking & Packaging, Box 5604, SE-11486 Stockholm, Sweden..
    Malti, Abdellah
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Gatenholm, Paul
    Chalmers Univ Technol, Dept Chem & Chem Engn, Kemigarden 4, SE-41269 Gothenburg, Sweden..
    Larsson, Per A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH Royal Inst Technol, Dept Fibre & Polymer Technol, Tekn Ringen 58, SE-10044 Stockholm, Sweden..
    Ambient-Dried, 3D-Printable and Electrically Conducting Cellulose Nanofiber Aerogels by Inclusion of Functional Polymers2020In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 30, no 12, article id 1909383Article in journal (Refereed)
    Abstract [en]

    This study presents a novel, green, and efficient way of preparing crosslinked aerogels from cellulose nanofibers (CNFs) and alginate using non-covalent chemistry. This new process can ultimately facilitate the fast, continuous, and large-scale production of porous, light-weight materials as it does not require freeze-drying, supercritical CO2 drying, or any environmentally harmful crosslinking chemistries. The reported preparation procedure relies solely on the successive freezing, solvent-exchange, and ambient drying of composite CNF-alginate gels. The presented findings suggest that a highly-porous structure can be preserved throughout the process by simply controlling the ionic strength of the gel. Aerogels with tunable densities (23-38 kg m(-3)) and compressive moduli (97-275 kPa) can be prepared by using different CNF concentrations. These low-density networks have a unique combination of formability (using molding or 3D-printing) and wet-stability (when ion exchanged to calcium ions). To demonstrate their use in advanced wet applications, the printed aerogels are functionalized with very high loadings of conducting poly(3,4-ethylenedioxythiophene):tosylate (PEDOT:TOS) polymer by using a novel in situ polymerization approach. In-depth material characterization reveals that these aerogels have the potential to be used in not only energy storage applications (specific capacitance of 78 F g(-1)), but also as mechanical-strain and humidity sensors.

  • 8.
    Görür, Yunus Can
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Sethi, Jatin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Maddalena, L.
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites.
    Reid, Michael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Carosio, F.
    Larsson, Per A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Rapidly Prepared Nanocellulose Hybrids as Gas Barrier, Flame Retardant, and Energy Storage Materials2022In: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 5, no 7, p. 9188-9200Article in journal (Refereed)
    Abstract [en]

    Cellulose nanofibril (CNF) hybrid materials show great promise as sustainable alternatives to oil-based plastics owing to their abundance and renewability. Nonetheless, despite the enormous success achieved in preparing CNF hybrids at the laboratory scale, feasible implementation of these materials remains a major challenge due to the time-consuming and energy-intensive extraction and processing of CNFs. Here, we describe a scalable materials processing platform for rapid preparation (<10 min) of homogeneously distributed functional CNF-gibbsite and CNF-graphite hybrids through a pH-responsive self-assembly mechanism, followed by their application in gas barrier, flame retardancy, and energy storage materials. Incorporation of 5 wt % gibbsite results in strong, transparent, and oxygen barrier CNF-gibbsite hybrid films in 9 min. Increasing the gibbsite content to 20 wt % affords them self-extinguishing properties, while further lowering their dewatering time to 5 min. The strategy described herein also allows for the preparation of freestanding CNF-graphite hybrids (90 wt % graphite) that match the energy storage performance (330 mA h/g at low cycling rates) and processing speed (3 min dewatering) of commercial graphite anodes. Furthermore, these ecofriendly electrodes can be fully recycled, reformed, and reused while maintaining their initial performance. Overall, this versatile concept combines a green outlook with high processing speed and material performance, paving the way toward scalable processing of advanced ecofriendly hybrid materials. 

  • 9.
    Görür, Yunus Can
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Sethi, Jatin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Maddalena, Lorenza
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Reid, Michael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Carosio, Federico
    Politecn Torino, Dipartimento Sci Applicata & Tecnol, Alessandria Campus,Viale Teresa Michel 5, I-15121 Alessandria, Italy..
    Larsson, Per A.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Rapid Processing of Functional Hybrids via Reversible Self-Assembly of NanocellulosesManuscript (preprint) (Other academic)
  • 10.
    Görür, Yunus Can
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Sethi, Jatin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Maddalena, Lorenza
    Montanari, Celine
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Reid, Michael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Carosio, Federico
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Larsson, Per A.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Rapid processing of functional nanocellulose hybrids for gas barrier, flame retardant and energy storage materialsManuscript (preprint) (Other academic)
  • 11.
    Mystek, Katarzyna
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Andreasson, Bo
    Nouryon Pulp and Performance Chemicals AB, Box 13000, 850 13 Sundsvall, Sweden.
    Reid, Michael
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Françon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Fager, Cecilia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Larsson, Per A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Svagan, Anna J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    The preparation of liquid-filled cellulose acetate capsules using emulsification techniques: conventional high-shear bulk mixing and microfluidicsManuscript (preprint) (Other academic)
    Download full text (pdf)
    fulltext
  • 12.
    Mystek, Katarzyna
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Li, Hailong
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Pettersson, Torbjörn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Svagan, Anna Justina
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Larsson, Per A.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Wet-expandable capsules made from partially modified cellulose2020In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 22, no 14, p. 4581-4592Article in journal (Refereed)
    Abstract [en]

    Preparation of lightweight and biocompatible hollow capsules holds great promise for various advanced engineering applications. Here, we use a heterogeneously modified structure of cellulose, which on the molecular level increases the flexibility of the capsule shell, to form hollow capsules. These capsules expand in the wet state when they are exposed to an external stimulus, in the present case a decreased external pressure. The capsules were prepared by a dropwise precipitation of a propane-saturated solution of cellulose partially modified to dialcohol cellulose, dissolved in a mixture ofN,N-dimethylacetamide and lithium chloride, into a non-solvent. The mechanical properties of the capsules were determined by measuring the expansion of the capsules upon a controlled decrease in external pressure. In addition, indentation measurements using atomic force microscopy were used to independently quantify the moduli of the capsule walls. The results show that the wet, modified cellulose capsules are much softer and, upon the same pressure change, expand significantly more than those made from unmodified cellulose. The greatest expansion observed for the modified capsules was 1.9 times the original volume, which corresponds to a final density of the expanded capsules of about 14 kg m(-3). These capsules therefore hold great potential to form green and lightweight foam-like materials.

  • 13.
    Wågberg, Lars
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Granberg, Hjalmar
    RISE Bioecon, Stockholm, Sweden..
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Zou, Fangxin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Östmans, Rebecca
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Spreading of water in low density nanocellulose networks: From capillaries to specific surface area2018In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
  • 14.
    Wågberg, Lars
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Hamedi, Max
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Marais, Andrew
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. Stanford Univ, Stanford, CA 94305 USA..
    Nyström, Gustav
    Swiss Fed Inst Technol, Dept Hlth Sci & Technol, Zurich, Switzerland..
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Granberg, Hjalmar
    RISE Bioecon, Stockholm, Sweden..
    Erlandsson, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, Fibre & Polymer Technol, Stockholm, Sweden..
    The use of the layer-by-layer technology and low density networks of cellulose nanofibrils for preparing new materials for energy storage2018In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Article in journal (Other academic)
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf