Ändra sökning
Avgränsa sökresultatet
1 - 2 av 2
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Samani, Forough Shahab
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Nätverk och systemteknik.
    Stadler, Rolf
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Nätverk och systemteknik.
    Predicting Distributions of Service Metrics using Neural Networks2018Ingår i: 2018 14TH INTERNATIONAL CONFERENCE ON NETWORK AND SERVICE MANAGEMENT (CNSM) / [ed] Salsano, S Riggio, R Ahmed, T Samak, T DosSantos, CRP, IEEE , 2018, s. 45-53Konferensbidrag (Refereegranskat)
    Abstract [en]

    We predict the conditional distributions of service metrics, such as response time or frame rate, from infrastructure measurements in a cloud environment. From such distributions, key statistics of the service metrics, including mean, variance, or percentiles can be computed, which are essential for predicting SLA conformance or enabling service assurance. We model the distributions as Gaussian mixtures, whose parameters we predict using mixture density networks, a class of neural networks. We apply the method to a Voll service and a KY store running on our lab testbed. The results validate the effectiveness of the method when applied to operational data. In the case of predicting the mean of the frame rate or response time, the accuracy matches that of random forest, a baseline model.

  • 2.
    Samani, Forough Shahab
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Nätverk och systemteknik.
    Stadler, Rolf
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Nätverk och systemteknik. RISE SICS, Lulea, Sweden..
    Johnsson, Andreas
    Ericsson Res, Gothenburg, Sweden..
    Flinta, Christofer
    Ericsson Res, Gothenburg, Sweden..
    Demonstration: Predicting Distributions of Service Metrics2019Ingår i: 2019 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Institute of Electrical and Electronics Engineers (IEEE), 2019, s. 745-746, artikel-id 8717915Konferensbidrag (Refereegranskat)
    Abstract [en]

    The ability to predict conditional distributions of service metrics is key to understanding end-to-end service behavior. From conditional distributions, other metrics can be derived, such as expected values and quantiles, which are essential for assessing SLA conformance. Our demonstrator predicts conditional distributions and derived metrics estimation in real-time, using infrastructure measurements. The distributions are modeled as Gaussian mixtures whose parameters are estimated using a mixture density network. The predictions are produced for a Video-on-Demand service that runs on a testbed at KTH.

1 - 2 av 2
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf