kth.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 33 av 33
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abbadessa, Anna
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. Univ Santiago de Compostela, IDIS Res Inst, Ctr Res Mol Med & Chron Dis CIMUS, Campus Vida,Ave Barcelona S-N, Santiago De Compostela 15706, Spain.;Univ Santiago de Compostela, Sch Pharm, Dept Pharmacol Pharm & Pharmaceut Technol, Campus Vida,Ave Barcelona S-N, Santiago De Compostela 15706, Spain..
    Dogaris, Ioannis
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Farahani, Saina Kishani
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. RISE Res Inst Sweden, Dept Mat & Surface Design, Drottning Kristinas Vag 61, SE-11428 Stockholm, Sweden..
    Rautkoski, Hille
    VTT Tech Res Ctr Finland Ltd, POB 1000, FI-02044 Espoo, Finland..
    Holopainen-Mantila, Ulla
    VTT Tech Res Ctr Finland Ltd, POB 1000, FI-02044 Espoo, Finland..
    Oinonen, Petri
    Ecohelix AB, Teknikringen 38, S-10044 Stockholm, Sweden..
    Henriksson, Gunnar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Träkemi och massateknologi.
    Layer-by-layer assembly of sustainable lignin-based coatings for food packaging applications2023Ingår i: Progress in organic coatings, ISSN 0300-9440, E-ISSN 1873-331X, Vol. 182, artikel-id 107676Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Packaging plays a critical role in ensuring food safety and shelf life by protecting against e.g., moisture, gases, and light. Polyethylene (PE) is widely used in food packaging, but it is mainly produced from non-renewable resources and it is an inefficient oxygen and light barrier. In this study, the layer-by-layer (LbL) assembly of a sustainably produced lignin-based polymer (EH) with polyethylenimine (PEI) or chitosan (CH) was used to fabricate (partially or fully) bio-based coatings with the aim of improving barrier properties of PE films. The charge density of EH was calculated using a polyelectrolyte titration method and the hydrodynamic diameters of EH, PEI and CH were determined by Dynamic Light Scattering (DLS). LbL assembly was monitored in situ via Quartz Crystal Microbalance with Dissipation (QCM-D) and Stagnation Point Adsorption Reflectometry (SPAR). PE films were coated with a variable number of PEI/EH or CH/EH bilayers (BL) using an immersive LbL assembly method. Coated films were studied in terms of light-blocking ability, wettability, thermal behaviour, surface structure, as well as oxygen and water vapor barrier properties. QCM-D and SPAR data showed a stepwise multilayer formation and strong interactions between the oppositely charged polymers, with PEI/EH coating having a greater amount of deposited polymer compared to CH/EH coating at the same number of BL. Overall, light barrier properties and wettability of the coated films increased with the number of deposited bilayers. Coated PE films maintained the overall thermal behaviour of PE. A number of BL of 20 was found to be the most promising based on the studied properties. Selected samples showed improved oxygen and water vapor barrier properties, with PEI/EH coating performing better than CH/EH coating. Taken altogether, we demonstrated that a novel and sustainable lignin-based polymer can be combined with PEI or CH to fabricate (partially or fully) bio-based coatings for food packaging.

  • 2.
    Alexakis, Alexandros Efraim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Engström, Joakim
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Stamm, Arne
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Riazanova, Anastasia
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. Wallenberg Wood Sci Ctr WWSC, Tekn Ringen 56-58, SE-10044 Stockholm, Sweden..
    Brett, Calvin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg, 22603, Germany.
    Roth, Stephan V.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg, 22603, Germany.
    Syrén, Per-Olof
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Fogelström, Linda
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Reid, Michael S.
    KTH, Skolan för teknikvetenskap (SCI), Teknisk mekanik.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Modification of cellulose through physisorption of cationic bio-based nanolatexes - comparing emulsion polymerization and RAFT-mediated polymerization-induced self-assembly2021Ingår i: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 23, nr 5, s. 2113-2122Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The polymerization of a bio-based terpene-derived monomer, sobrerol methacrylate (SobMA), was evaluated in the design of polymeric nanoparticles (nanolatexes). Their synthesis was accomplished by using emulsion polymerization, either by free-radical polymerization in the presence of a cationic surfactant or a cationic macroRAFT agent by employing RAFT-mediated polymerization-induced self-assembly (PISA). By tuning the length of the hydrophobic polymer, it was possible to control the nanoparticle size between 70 and 110 nm. The average size of the latexes in both wet and dry state were investigated by microscopy imaging and dynamic light scattering (DLS). Additionally, SobMA was successfully copolymerized with butyl methacrylate (BMA) targeting soft-core nanolatexes. The comparison of the kinetic profile of the cationically stabilized nanolatexes highlighted the differences of both processes. The SobMA-based nanolatexes yielded high T-g similar to 120 degrees C, while the copolymer sample exhibited a lower T-g similar to 50 degrees C, as assessed by Differential Scanning Calorimetry (DSC). Thereafter, the nanolatexes were adsorbed onto cellulose (filter paper), where they were annealed at elevated temperatures to result in polymeric coatings. Their morphologies were analysed by Field Emission Scanning Electron Microscopy (FE-SEM) and compared to a commercial sulfate polystyrene latex (PS latex). By microscopic investigation the film formation mechanism could be unravelled. Water contact angle (CA) measurements verified the transition from a hydrophilic to a hydrophobic surface after film formation had occured. The obtained results are promising for the toolbox of bio-based building blocks, focused on sobrerol-based monomers, to be used in emulsion polymerizations either for tailored PISA-latexes or facile conventional latex formation, in order to replace methyl methacrylate or other high T-g-monomers.

  • 3.
    Asta, Nadia
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Loist, Maximilian
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Model Systems for Clarifying the Effects of Surface Modification on Fibre-Fibre Joint Strength and Paper Mechanical PropertiesManuskript (preprint) (Övrigt vetenskapligt)
  • 4.
    Asta, Nadia
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. RISE Research Institute of Sweden, SE-114 86 Stockholm, Sweden.
    Pettersson, Torbjörn
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    The Use of Model Cellulose Materials for Studying Molecular Interactions at Cellulose Interfaces2023Ingår i: ACS Macro Letters, E-ISSN 2161-1653, Vol. 12, nr 11, s. 1530-1535Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Despite extensive research on biobased and fiber-basedmaterials, fundamental questions regarding the molecular processesgoverning fiber−fiber interactions remain unanswered. In this study, weintroduce a method to examine and clarify molecular interactions withinfiber−fiber joints using precisely characterized model materials, i.e.,regenerated cellulose gel beads with nanometer-smooth surfaces. Byphysically modifying these materials and drying them together to createmodel joints, we can investigate the mechanisms responsible for joiningcellulose surfaces and how this affects adhesion in both dry and wet statesthrough precise separation measurements. The findings reveal a subtlebalance in the joint formation, influencing the development ofnanometer-sized structures at the contact zone and likely inducingbuilt-in stresses in the interphase. This research illustrates how model materials can be tailored to control interactions betweencellulose-rich surfaces, laying the groundwork for future high-resolution studies aimed at creating stiff, ductile, and/or tough jointsbetween cellulose surfaces and to allow for the design of high-performance biobased materials.

    Ladda ner fulltext (pdf)
    fulltext
  • 5.
    Atoufi, Zhaleh
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Ciftci, Göksu Cinar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Larsson, Per A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Green Ambient-Dried Aerogels with a Facile pH-Tunable Surface Charge for Adsorption of Cationic and Anionic Contaminants with High Selectivity2022Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 23, nr 11, s. 4934-4947Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The fabrication of reusable, sustainable adsorbents from low-cost, renewable resources via energy efficient methods is challenging. This paper presents wet-stable, carboxymethylated cellulose nanofibril (CNF) and amyloid nanofibril (ANF) based aerogel-like adsorbents prepared through efficient and green processes for the removal of metal ions and dyes from water. The aerogels exhibit tunable densities (18-28 kg m-3), wet resilience, and an interconnected porous structure (99% porosity), with a pH controllable surface charge for adsorption of both cationic (methylene blue and Pb(II)) and anionic (brilliant blue, congo red, and Cr(VI)) model contaminants. The Langmuir saturation adsorption capacity of the aerogel was calculated to be 68, 79, and 42 mg g-1for brilliant blue, Pb(II), and Cr(VI), respectively. Adsorption kinetic studies for the adsorption of brilliant blue as a model contaminant demonstrated that a pseudo-second-order model best fitted the experimental data and that an intraparticle diffusion model suggests that there are three adsorption stages in the adsorption of brilliant blue on the aerogel. Following three cycles of adsorption and regeneration, the aerogels maintained nearly 97 and 96% of their adsorption capacity for methylene blue and Pb(II) as cationic contaminants and 89 and 80% for brilliant blue and Cr(VI) as anionic contaminants. Moreover, the aerogels showed remarkable selectivity for Pb(II) in the presence of calcium and magnesium as background ions, with a selectivity coefficient more than 2 orders of magnitude higher than calcium and magnesium. Overall, the energy-efficient and sustainable fabrication procedure, along with good structural stability, reusability, and selectivity, makes these aerogels very promising for water purification applications.

  • 6.
    Atoufi, Zhaleh
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Larsson, Per A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Surface tailoring of cellulose aerogel-like structures with ultrathin coatings using molecular layer-by-layer assembly2022Ingår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 282, artikel-id 119098Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cellulose nanofibril-based aerogels have promising applicability in various fields; however, developing an effi-cient technique to functionalize and tune their surface properties is challenging. In this study, physically and covalently crosslinked cellulose nanofibril-based aerogel-like structures were prepared and modified by a mo-lecular layer-by-layer (m-LBL) deposition method. Following three m-LBL depositions, an ultrathin polyamide layer was formed throughout the aerogel and its structure and chemical composition was studied in detail. Analysis of model cellulose surfaces showed that the thickness of the deposited layer after three m-LBLs was approximately 1 nm. Although the deposited layer was extremely thin, it led to a 2.6-fold increase in the wet specific modulus, improved the acid-base resistance, and changed the aerogels from hydrophilic to hydrophobic making them suitable materials for oil absorption with the absorption capacity of 16-36 g/g. Thus, demon-strating m-LBL assembly is a powerful technique for tailoring surface properties and functionality of cellulose substrates.

  • 7. Attias, N.
    et al.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Mijowska, S. C.
    Dobryden, Illia
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Yt- och korrosionsvetenskap.
    Isaksson, M.
    Pokroy, B.
    Grobman, Y. J.
    Abitbol, T.
    Biofabrication of Nanocellulose–Mycelium Hybrid Materials2021Ingår i: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 5, nr 2Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Healthy material alternatives based on renewable resources and sustainable technologies have the potential to disrupt the environmentally damaging production and consumption practices established throughout the modern industrial era. In this study, a mycelium–nanocellulose biocomposite with hybrid properties is produced by the agitated liquid culture of a white-rot fungus (Trametes ochracea) with nanocellulose (NC) comprised as part of the culture media. Mycelial development proceeds via the formation of pellets, where NC is enriched in the pellets and depleted from the surrounding liquid media. Micrometer-scale NC elements become engulfed in mycelium, whereas it is hypothesized that the nanometer-scale fraction becomes integrated within the hyphal cell wall, such that all NC in the system is essentially surface-modified by mycelium. The NC confers mechanical strength to films processed from the biocomposite, whereas the mycelium screens typical cellulose–water interactions, giving fibrous slurries that dewater faster and films that exhibit significantly improved wet resistance in comparison to pure NC films. The mycelium–nanocellulose biocomposites are processable in the ways familiar to papermaking and are suggested for diverse applications, including packaging, filtration, and hygiene products.

  • 8.
    Belioka, Maria-Paraskeui
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Pettersson, Torbjörn
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Exploration of surface cleaning and surface interactions via atomic force microscopy2019Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Artikel i tidskrift (Övrigt vetenskapligt)
  • 9.
    Buchmann, Sebastian
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Mikro- och nanosystemteknik.
    Enrico, Alessandro
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Mikro- och nanosystemteknik.
    Holzreuter, Muriel Alexandra
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Zeglio, Erica
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Mikro- och nanosystemteknik.
    Niklaus, Frank
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Mikro- och nanosystemteknik.
    Stemme, Göran
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Mikro- och nanosystemteknik.
    Herland, Anna
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Mikro- och nanosystemteknik.
    Defined neuronal-astrocytic interactions enabled with a 3D printed platformManuskript (preprint) (Övrigt vetenskapligt)
  • 10.
    Buchmann, Sebastian
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Nanobioteknologi.
    Enrico, Alessandro
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Mikro- och nanosystemteknik.
    Holzreuter, Muriel Alexandra
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Mikro- och nanosystemteknik.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Zeglio, Erica
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Nanobioteknologi.
    Niklaus, Frank
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Mikro- och nanosystemteknik.
    Stemme, Göran
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Mikro- och nanosystemteknik.
    Herland, Anna
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Nanobioteknologi.
    Probabilistic cell seeding and non-autofluorescent 3D-printed structures as scalable approach for multi-level co-culture modeling2023Ingår i: Materials Today Bio, ISSN 2590-0064, Vol. 21, s. 100706-100706, artikel-id 100706Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    To model complex biological tissue in vitro, a specific layout for the position and numbers of each cell type isnecessary. Establishing such a layout requires manual cell placement in three dimensions (3D) with micrometricprecision, which is complicated and time-consuming. Moreover, 3D printed materials used in compartmentalizedmicrofluidic models are opaque or autofluorescent, hindering parallel optical readout and forcing serial charac-terization methods, such as patch-clamp probing. To address these limitations, we introduce a multi-level co-culture model realized using a parallel cell seeding strategy of human neurons and astrocytes on 3D structuresprinted with a commercially available non-autofluorescent resin at micrometer resolution. Using a two-stepstrategy based on probabilistic cell seeding, we demonstrate a human neuronal monoculture that forms net-works on the 3D printed structure and can establish cell-projection contacts with an astrocytic-neuronal co-cultureseeded on the glass substrate. The transparent and non-autofluorescent printed platform allows fluorescence-based immunocytochemistry and calcium imaging. This approach provides facile multi-level compartmentaliza-tion of different cell types and routes for pre-designed cell projection contacts, instrumental in studying complextissue, such as the human brain.

  • 11.
    Engström, Joakim
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Brotherton, E. E.
    Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, UK .
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Ytbehandlingsteknik.
    Armes, S. P.
    Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, UK .
    Hatton, F. L.
    Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, UK .
    Investigating the adsorption of anisotropic diblock copolymer worms onto planar silica and nanocellulose surfaces using a quartz crystal microbalance2021Ingår i: Polymer Chemistry, ISSN 1759-9954, E-ISSN 1759-9962, Vol. 12, nr 42, s. 6088-6100Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Electrostatic adsorption of cationic polyelectrolytes onto anionic cellulosic substrates is an attractive route for facile surface modification of biorenewable materials. Recently, attention has focused on adsorbing cationic spherical diblock copolymer nanoparticles onto model cellulose and/or nanocellulosic substrates. Herein, we investigate physical adsorption of highly anisotropic copolymer worms bearing either anionic or cationic charge onto planar silica, cellulose nanocrystal (CNC) or cellulose nanofibril (CNF) surfaces using quartz crystal microbalance with dissipation monitoring. Electrostatic interactions dominate in the case of anionic silica and CNC surfaces because the adsorbed mass of cationic worms was greater than that of anionic worms. However, either anionic or cationic worms could be adsorbed onto in situ generated CNF substrates, suggesting that additional interactions were involved: hydrogen bonding, van der Waals forces, and possibly covalent bond formation. Scanning electron and atomic force microscopy studies of the dried planar substrates after adsorption experiments confirmed the presence of adsorbed copolymer worms. Finally, composite worm/CNF films exhibited restricted swelling behavior when immersed in water compared to reference CNF films, suggesting that the worms reinforce CNF films by acting as a physical crosslinker. This study is the first investigation of the physical adsorption of highly anisotropic diblock copolymer worms onto cellulosic surfaces.

  • 12.
    Görür, Yunus Can
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Francon, Hugo
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Sethi, Jatin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Maddalena, L.
    Montanari, Celine
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Erlandsson, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Carosio, F.
    Larsson, Per A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Rapidly Prepared Nanocellulose Hybrids as Gas Barrier, Flame Retardant, and Energy Storage Materials2022Ingår i: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 5, nr 7, s. 9188-9200Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cellulose nanofibril (CNF) hybrid materials show great promise as sustainable alternatives to oil-based plastics owing to their abundance and renewability. Nonetheless, despite the enormous success achieved in preparing CNF hybrids at the laboratory scale, feasible implementation of these materials remains a major challenge due to the time-consuming and energy-intensive extraction and processing of CNFs. Here, we describe a scalable materials processing platform for rapid preparation (<10 min) of homogeneously distributed functional CNF-gibbsite and CNF-graphite hybrids through a pH-responsive self-assembly mechanism, followed by their application in gas barrier, flame retardancy, and energy storage materials. Incorporation of 5 wt % gibbsite results in strong, transparent, and oxygen barrier CNF-gibbsite hybrid films in 9 min. Increasing the gibbsite content to 20 wt % affords them self-extinguishing properties, while further lowering their dewatering time to 5 min. The strategy described herein also allows for the preparation of freestanding CNF-graphite hybrids (90 wt % graphite) that match the energy storage performance (330 mA h/g at low cycling rates) and processing speed (3 min dewatering) of commercial graphite anodes. Furthermore, these ecofriendly electrodes can be fully recycled, reformed, and reused while maintaining their initial performance. Overall, this versatile concept combines a green outlook with high processing speed and material performance, paving the way toward scalable processing of advanced ecofriendly hybrid materials. 

  • 13.
    Görür, Yunus Can
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Francon, Hugo
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Sethi, Jatin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Maddalena, Lorenza
    Montanari, Celine
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Erlandsson, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Carosio, Federico
    Politecn Torino, Dipartimento Sci Applicata & Tecnol, Alessandria Campus,Viale Teresa Michel 5, I-15121 Alessandria, Italy..
    Larsson, Per A.
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Rapid Processing of Functional Hybrids via Reversible Self-Assembly of NanocellulosesManuskript (preprint) (Övrigt vetenskapligt)
  • 14.
    Görür, Yunus Can
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Francon, Hugo
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Sethi, Jatin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Maddalena, Lorenza
    Montanari, Celine
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Erlandsson, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Carosio, Federico
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Larsson, Per A.
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Rapid processing of functional nanocellulose hybrids for gas barrier, flame retardant and energy storage materialsManuskript (preprint) (Övrigt vetenskapligt)
  • 15.
    Görür, Yunus Can
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Montanari, Celine
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Larsson, Per Tomas
    Larsson, Per A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Advanced Characterization of Self-Fibrillating Cellulose Fibers and Their Use in Tunable Filters2021Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 13, nr 27, s. 32467-32478Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Thorough characterization and fundamental understanding of cellulose fibers can help us develop new, sustainable material streams and advanced functional materials. As an emerging nanomaterial, cellulose nanofibrils (CNFs) have high specific surface area and good mechanical properties; however, handling and processing challenges have limited their widespread use. This work reports an in-depth characterization of self-fibrillating cellulose fibers (SFFs) and their use in smart, responsive filters capable of regulating flow and retaining nanoscale particles. By combining direct and indirect characterization methods with polyelectrolyte swelling theories, it was shown that introduction of charges and decreased supramolecular order in the fiber wall were responsible for the exceptional swelling and nanofibrillation of SFFs. Different microscopy techniques were used to visualize the swelling of SFFs before, during, and after nanofibrillation. Through filtration and pH adjustment, smart filters prepared via in situ nanofibrillation showed an ability to regulate the flow rate through the filter and a capacity of retaining 95% of 300 nm (diameter) silica nanoparticles. This exceptionally rapid and efficient approach for making smart filters directly addresses the challenges associated with dewatering of CNFs and bridges the gap between science and technology, making the widespread use of CNFs in high-performance materials a not-so-distant reality.

    Ladda ner fulltext (pdf)
    fulltext
  • 16.
    Jain, Karishma
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Larsson, Per A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    On the interaction between PEDOT:PSS and cellulose: Adsorption mechanisms and controlling factors2021Ingår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 260, artikel-id 117818Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a conducting polymer frequently used with cellulose, to develop advanced electronic materials. To understand the fundamental interactions between cellulose and PEDOT:PSS, a quartz crystal microbalance with dissipation (QCM-D) was used to study the adsorption of PEDOT:PSS onto model films of cellulose-nanofibrils (CNFs) and regenerated cellulose. The results show that PEDOT:PSS adsorbs spontaneously onto anionically charged cellulose wherein the adsorbed amount can be tuned by altering solution parameters such as pH, ionic strength and counterion to the charges on the CNF. Temperature-dependent QCM-D studies indicate that an entropy gain is the driving force for adsorption, as the adsorbed amount of PEDOT:PSS increased with increasing temperature. Colloidal probe AFM, in accordance with QCM-D results, also showed an increased adhesion between cellulose and PEDOT:PSS at low pH. AFM images show bead-like PEDOT:PSS particles on CNF surfaces, while no such organization was observed on the regenerated cellulose surfaces. This work provides insight into the interaction of PEDOT:PSS/cellulose that will aid in the design of sustainable electronic devices.

  • 17.
    Mystek, Katarzyna
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Andreasson, Bo
    Nouryon Pulp and Performance Chemicals AB, Box 13000, 850 13 Sundsvall, Sweden.
    Reid, Michael
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Françon, Hugo
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Fager, Cecilia
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Larsson, Per A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Svagan, Anna J.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    The preparation of liquid-filled cellulose acetate capsules using emulsification techniques: conventional high-shear bulk mixing and microfluidicsManuskript (preprint) (Övrigt vetenskapligt)
    Ladda ner fulltext (pdf)
    fulltext
  • 18.
    Mystek, Katarzyna
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Andreasson, Bo
    Nouryon Pulp and Performance Chemicals AB, Stockviksvägen 20, 854 67 Sundsvall, Sweden, Stockviksvägen 20.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Francon, Hugo
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Fager, Cecilia
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Larsson, Per A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Svagan, Anna Justina
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    The preparation of cellulose acetate capsules using emulsification techniques: High-shear bulk mixing and microfluidics2023Ingår i: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 38, nr 4, s. 593-605Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This work describes an emulsification-solvent-evaporation method for the preparation of liquid-filled capsules made from cellulose acetate. Two different emulsification techniques were applied: bulk emulsification by high-shear mixing, and droplet generation using microfluidics. The bulk emulsification method resulted in the formation of oil-in-water emulsions composed of an organic mixture of isooctane and cellulose acetate in methyl acetate, and an aqueous phase of high-molecular-weight polyvinyl alcohol (PVA). Upon the solvent evaporation, the emulsion droplets evolved into isooctane-filled cellulose acetate capsules. In contrast, microfluidics led to the formation of monodisperse droplets composed of the aqueous PVA solution dispersed in the organic phase. Upon the solvent evaporation, the emulsion droplets evolved into water-filled cellulose acetate capsules. Owing to the thermoplastic properties of the cellulose acetate, the capsules formed with the bulk mixing demonstrated a significant expansion when exposed to an increased temperature. Such expanded capsules hold great promise as building blocks in lightweight materials.

  • 19.
    Mystek, Katarzyna
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Larsson, Per A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    In Situ Modification of Regenerated Cellulose Beads: Creating All-Cellulose Composites2020Ingår i: Industrial & Engineering Chemistry Research, ISSN 0888-5885, E-ISSN 1520-5045, Vol. 59, nr 7, s. 2968-2976Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Developing more sustainable products requires innovative ways to utilize and modify renewable resources. Here, a simple one-step in situ modification of regenerated cellulose beads using cellulose nanocrystals (CNC) and dropwise precipitation of cellulose/N,N-dimethylacetamide and lithium chloride (DMAc/LiCI) solution is presented. A more condensed internal structure and increased surface roughness were observed when higher CNC concentrations were used in the precipitation media. Incorporation of CNCs significantly reduces the water holding capacity of the beads and simultaneously impacts the kinetics of drying. Beads modified using the highest CNC concentration (0.5 wt %) exhibited a reduction in the Young modulus by more than 20% and an increase in compressibility to failure by 10% compared with native beads. Overall, inclusion of nanoparticles during bead formation is a simple method that can tune the mechanical, structural, and swelling/drying behavior of cellulose beads and broaden their potential for different end-use applications such as separations and controlled release.

  • 20.
    Reid, Michael S.
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Erlandsson, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH Royal Inst Technol, Fibre & Polymer Technol, Stockholm, Sweden..
    Incorporation of cellulose nanocrystals into polyamide nanocomposites with controlled architecture via interfacial polymerization2019Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    The widespread use of renewable nanomaterials has been limited due to poor integration with conventional polymer matrices. Often, chemical and physical surface modificationsare implemented to improve compatibility, however this comes with environmental and economic cost. This work demonstrates that renewable nanomaterials, specifically cellulose nanocrystals (CNCs), can be utilized in their unmodified state and presents a simple and versatile, one-step method to produce polyamide/CNC nanocomposites with unique Janus-like properties. Nanocomposites in the form of films, fibres and capsules areprepared by dispersing as prepared CNCs in the aqueous phase prior to the interfacial polymerization of aromatic diamines and acyl chlorides. The diamines in the aqueous phase not only serve as a monomer for polymerization but, additionally adsorb to, and promote the incorporation of CNCs into the nanocomposite. Regardless of the architecture CNCs are only present along the surfacefacing the aqueous phaseresulting in materials with unique, Janus-likewetting behaviour and potential applications in filtration, separations, drug delivery and advanced fibres. 

    Ladda ner fulltext (pdf)
    Interfacial Polymerization of Cellulose Nanocrystal Polyamide Janus Nanocomposites with Controlled Architectures
  • 21.
    Reid, Michael S.
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Erlandsson, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Interfacial Polymerization of Cellulose Nanocrystal Polyamide Janus Nanocomposites with Controlled Architectures2019Ingår i: ACS Macro Letters, E-ISSN 2161-1653, Vol. 8, nr 10, s. 1334-1340Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The widespread use of renewable nanomaterials has been limited due to poor integration with conventional polymer matrices. Often, chemical and physical surface modifications are implemented to improve compatibility, however, this comes with environmental and economic cost. This work demonstrates that renewable nanomaterials, specifically cellulose nanocrystals (CNCs), can be utilized in their unmodified state and presents a simple and versatile, one-step method to produce polyamide/CNC nanocomposites with unique Janus-like properties. Nanocomposites in the form of films, fibers, and capsules are prepared by dispersing as-prepared CNCs in the aqueous phase prior to the interfacial polymerization of aromatic diamines and acyl chlorides. The diamines in the aqueous phase not only serve as a monomer for polymerization, but additionally, adsorb to and promote the incorporation of CNCs into the nanocomposite. Regardless of the architecture, CNCs are only present along the surface facing the aqueous phase, resulting in materials with unique, Janus-like wetting behavior and potential applications in filtration, separations, drug delivery, and advanced fibers.

    Ladda ner fulltext (pdf)
    fulltext
  • 22.
    Reid, Michael S.
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Karlsson, M.
    Abitbol, T.
    Fluorescently labeled cellulose nanofibrils for detection and loss analysis2020Ingår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 250, artikel-id 116943Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Fluorescently labeled cellulose nanofibrils (CNFs) were used to evaluate CNF leaching from paper according to standard safety assays for food contact materials. Enzymatically pretreated pulp was first labeled with 5-([4,6-Dichlorotriazin-2-yl]amino)fluorescein hydrochloride (DTAF), followed by homogenization to produce fluorescent CNFs of varying degrees of fibrillation. Labeling at the μmolar DTAF/g cellulose level imparted quantitative ppb fluorescence detection of CNFs (LOD of approximately 20 ppb), without significantly altering other material properties, suggesting that DTAF-labeled CNFs are an appropriate mimic for native CNFs and that this approach can be used to detect low CNF concentrations. Cold and hot-water extractions of laboratory papers (100 % CNFs and CNF-fiber blended papers) showed loss values below 3 wt% CNFs, with the finest CNF quality showing the least loss overall and with greater loss experienced under hot water conditions compared with cold water. DTAF-labeled CNFs can be used to address questions related to CNF distribution, localization, and loss.

  • 23.
    Reid, Michael S.
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Träger, Andrea
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Cobo Sanchez, Carmen
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Tunable Adhesion and Interfacial Structure of Layer-by-Layer Assembled Block co-polymer Micelle and Polyelectrolyte Coatings2022Ingår i: Advanced Materials Interfaces, ISSN 2196-7350, Vol. 9, nr 17, s. 2200065-, artikel-id 2200065Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Understanding and tuning nanoscale structure is critical in developing new coatings and adhesives. In this work layer-by-layer assembly of block co-polymer (BCP) micelles and oppositely charged polyelectrolytes produces structurally unique coatings with wet adhesion comparable to that of mussel adhesive proteins. Cationic (CAT) and anionic (ANI) BCPs, synthesized by atom transfer radical polymerization (ATRP), are used to create colloidally stable, self-assembled, spherical BCP micelles. The assembly of BCP micelle and polyelectrolyte multilayers is monitored in situ where CAT- and ANI-BCP micelles exhibit linear and super-linear growth, respectively. Imaging of the surfaces reveals that CAT-BCP micelles yield flat, uniform layers whereas ANI-BCP micelle assemblies form islands that increase in surface area with each additional layer. The adhesion of these layers, measured by colloidal probe atomic force microscopy (CP-AFM), shows that the distinct layers of CAT-BCP micelle assemblies produce alternating high and low adhesion surfaces whereas ANI-BCP micelle assemblies continually increase in adhesion with each additional bilayer. The unique behavior of each assembly demonstrates that both composition and structure play important roles in wet adhesion of submicron layers and that each can be tuned to target performance for different applications. 

  • 24.
    Sethi, Jatin
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Glowacki, Eric
    Linköping University, Campus Norrköping, Laboratory of Organic Electronics, SE-602 21 Norrköping, Sweden; Central European Institute of Technology, Brno University of Technology, CZ-601 77 Brno, Czech Republic.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. RISE Research Institutes of Sweden, Material and Surface Design, SE-114 86, Stockholm, Sweden.
    Larsson, Per A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Ultra-thin parylene-aluminium hybrid coatings on nanocellulose films to resist water sensitivity2024Ingår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 323, s. 121365-, artikel-id 121365Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Non-sustainable single-use plastics used for food packaging needs to be phased out. Films made from cellulose nanofibrils (CNFs) are suitable candidates for biodegradable and recyclable packaging materials as they exhibit good mechanical properties, excellent oxygen barrier properties and high transparency. Yet, their poor water vapour barrier properties have been a major hindrance in their commercialisation. Here, we describe the preparation of 25 μm thick CNF films with significantly improved water vapour barrier properties after deposition of ultrathin polymeric and metallic coatings, parylene C and aluminium, respectively. When first adding a 40 nm aluminium layer followed by an 80 nm parylene layer, i.e. with a combined thickness of less than one percent of the CNF film, a water vapour transmission rate of 2.8 g m−2 d−1 was achieved at 38 °C and 90 % RH, surpassing a 25 μm polypropylene film (4–12 g m−2 d−1). This is an improvement of more than 700 times compared to uncoated CNF films, under some of the harshest possible conditions a packaging material will need to endure in commercial use. The layers showed a good and even coverage, as assessed by atomic force microscopy, and the parylene-coated surfaces were hydrophobic with a contact angle of 110°, providing good water repellency.

  • 25.
    Tian, Weiqian
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    VahidMohammadi, Armin
    Auburn Univ, Dept Mech & Mat Engn, Auburn, AL 36849 USA..
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wang, Zhen
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH Royal Inst Technol, Dept Fibre & Polymer Technol, Tekn Ringen 56, S-10044 Stockholm, Sweden..
    Ouyang, Liangqi
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Erlandsson, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Pettersson, Torbjörn
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Beidaghi, Majid
    Auburn Univ, Dept Mech & Mat Engn, Auburn, AL 36849 USA..
    Hamedi, Mahiar
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose2019Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, artikel-id 1902977Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The family of two-dimensional (2D) metal carbides and nitrides, known as MXenes, are among the most promising electrode materials for supercapacitors thanks to their high metal-like electrical conductivity and surface-functional-group-enabled pseudocapacitance. A major drawback of these materials is, however, the low mechanical strength, which prevents their applications in lightweight, flexible electronics. A strategy of assembling freestanding and mechanically robust MXene (Ti3C2Tx) nanocomposites with one-dimensional (1D) cellulose nanofibrils (CNFs) from their stable colloidal dispersions is reported. The high aspect ratio of CNF (width of approximate to 3.5 nm and length reaching tens of micrometers) and their special interactions with MXene enable nanocomposites with high mechanical strength without sacrificing electrochemical performance. CNF loading up to 20%, for example, shows a remarkably high mechanical strength of 341 MPa (an order of magnitude higher than pristine MXene films of 29 MPa) while still maintaining a high capacitance of 298 F g(-1) and a high conductivity of 295 S cm(-1). It is also demonstrated that MXene/CNF hybrid dispersions can be used as inks to print flexible micro-supercapacitors with precise dimensions. This work paves the way for fabrication of robust multifunctional MXene nanocomposites for printed and lightweight structural devices.

  • 26.
    Träger, Andrea
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH).
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Pendergraph, Samuel A.
    Cobo Sanchez, Carmen
    Malmström, Eva
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wågberg, Lars
    KTH, Tidigare Institutioner (före 2005), Fiber- och polymerteknologi.
    Enhanced toolbox to tailor theproperties of Layer‐by‐Layer assembled triblock copolymer filmsManuskript (preprint) (Övrigt vetenskapligt)
  • 27. Vanderfleet, O. M.
    et al.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Bras, J.
    Heux, L.
    Godoy-Vargas, J.
    Panga, M. K. R.
    Cranston, E. D.
    Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends2019Ingår i: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 26, nr 1, s. 507-528Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Abstract: This study provides insight into the thermal degradation of cotton cellulose nanocrystals (CNCs) by tuning their physico-chemical properties through acid hydrolysis using blends of phosphoric and sulfuric acid. CNCs isolated by sulfuric acid hydrolysis are known to degrade at lower temperatures than CNCs hydrolyzed with phosphoric acid; however, the reason for this change is unclear. Although all CNCs are inherently relatively thermally stable, their application in polymer composites and liquid formulations designed to function at high temperatures could be extended if thermal stability was improved. Herein, thermogravimetric analysis was carried out on six types of CNCs (in both acid and sodium form) with different surface chemistry, surface charge density, dimensions, crystallinity and degree of polymerization (DP) to identify the key properties that influence thermal stability of nanocellulose. In acid form, CNC surface charge density was found to be the determining factor in thermal stability due to de-esterification and acid-catalyzed degradation. Conversely, in sodium form, surface chemistry and charge density had a negligible effect on the onset of thermal degradation, however, the DP of the cellulose polymer chains highly influenced stability. The presence of more reducing ends in lower DP nanocrystals is inferred to facilitate thermally-induced depolymerization and degradation. Degree of crystallinity did not significantly affect CNC thermal stability. Studying CNCs produced from single or blends of acids (and changing the counterion) elucidated the thermal behavior of cellulose and furthermore demonstrated new routes to tailor CNCs thermal and colloidal stability. Graphical abstract: [Figure not available: see fulltext.].

  • 28.
    Vanderfleet, Oriana
    et al.
    McMaster Univ, Chem Engn, Mississauga, ON, Canada..
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Bras, Julien
    CNRS, Grenoble INP Pagora, St Martin Dheres, France..
    Heux, Laurent
    CNRS, CERMAV, Grenoble 09, France..
    Godoy, Jazmin
    Schlumberger Technol Corp, Sugar Land, TX USA..
    Panga, Mohan
    Schlumberger Technol Corp, Sugar Land, TX USA..
    Cranston, Emily
    McMaster Univ, Chem Engn, Mississauga, ON, Canada..
    Effects of degree of polymerization, surface chemistry, and surface charge density on cellulose nanocrystal thermal stability2019Ingår i: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Artikel i tidskrift (Övrigt vetenskapligt)
  • 29.
    Yang, Xuan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. Zhejiang Univ, Key Lab Biomass Chem Engn, Minist Educ, Coll Chem & Biol Engn, Hangzhou 310027, Peoples R China.;Inst Zhejiang Univ Quzhou, Quzhou 324000, Peoples R China..
    Jungstedt, Erik
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Polymer Films from Cellulose Nanofibrils-Effects from Interfibrillar Interphase on Mechanical Behavior2021Ingår i: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 54, nr 9, s. 4443-4452Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Dense polymeric films based on network-forming cellulose nanofibrils (CNFs) have excellent mechanical properties but are limited by moisture sensitivity. Here, interfibrillar effects from CNF surface properties are investigated. TEMPO-oxidized CNFs and two native CNFs are prepared with a similar length and width, to exclude geometrical effects. The CNFs have different surface properties in terms of sorbed hemicellulose content, hemicellulose molar mass, and surface charge. Moisture sorption, structural changes, and mechanical properties at different relative humidities are characterized. The presence of sorbed hemicelluloses in the interfibrillar interphase has favorable effects on the mechanical tensile properties. Surface-charged carboxyls increased moisture sorption and film thickness swelling and reduced the mechanical properties. A comparison with biaxially oriented polyethylene terephthalate films provides a perspective into the structure and properties of CNF films. The present study shows the importance of the interfibrillar interface and interphase region for mechanical film properties, including moisture effects.

  • 30.
    Yang, Xuan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. Zhejiang Univ, Coll Chem & Biol Engn, Key Lab Biomass Chem Engn, State Key Lab Chem Engn,Minist Educ, Hangzhou 310027, Peoples R China..
    Li, Lengwan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Nishiyama, Yoshiharu
    Univ Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France..
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. RISE Res Inst Sweden, Drottning Kristinas vag 55, S-11428 Stockholm, Sweden..
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Processing strategy for reduced energy demand of nanostructured CNF/clay composites with tailored interfaces2023Ingår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 312, artikel-id 120788Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Nacre-mimicking nanocomposites based on colloidal cellulose nanofibrils (CNFs) and clay nanoparticles show excellent mechanical properties, yet processing typically involves preparation of two colloids followed by a mixing step, which is time- and energy-consuming. In this study, a facile preparation method using low energy kitchen blenders is reported in which CNF disintegration, clay exfoliation and mixing carried out in one step. Compared to composites made from the conventional method, the energy demand is reduced by about 97 %; the composites also show higher strength and work to fracture. Colloidal stability, CNF/clay nanostructure, and CNF/clay orientation are well characterized. The results suggest favorable effects from hemicellulose-rich, negatively charged pulp fibers and corresponding CNFs. CNF disintegration and colloidal stability are facilitated with substantial CNF/clay interfacial interaction. The results show a more sustainable and industrially relevant processing concept for strong CNF/clay nanocomposites.

  • 31.
    Yang, Xuan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Olsén, Peter
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Berglund, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Eco-Friendly Cellulose Nanofibrils Designed by Nature: Effects from Preserving Native StateManuskript (preprint) (Övrigt vetenskapligt)
  • 32.
    Yang, Xuan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Olsén, Peter
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Berglund, Lars A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Eco-Friendly Cellulose Nanofibrils Designed by Nature: Effects from Preserving Native State2020Ingår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 14, nr 1, s. 724-735Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cellulose nanofibrils (CNFs) show high modulus and strength and are already used in industrial applications. Mechanical properties of neat CNF films or CNF-polymer matrix nanocomposites are usually much better than for polymer matrix composite films reinforced by clay, graphene, graphene oxide, or carbon nanotubes. In order to obtain small CNF diameter and colloidal stability, chemical modification has so far been necessary, but this increases cost and reduces eco-friendly attributes. In this study, an unmodified holocellulose CNF (Holo-CNF) with small diameter is obtained from mildly peracetic acid delignified wood fibers. CNF is readily defibrillated by low-energy kitchen blender processing. The hemicellulose coating on individual fibrils in the wood plant cell wall is largely preserved in Holo-CNF. This "native" CNF shows well-preserved native fibril structure in terms of length (similar to 2.1 mu m), diameter (<5 nm), high crystallinity, high cellulose molar mass, electronegative charge, and limited mechanical processing damage. The hemicellulose coating contributes mechanical properties and high optical transmittance for CNF nanopaper, which can otherwise only be achieved with chemically modified CNFs. The CNF nanopaper shows superior mechanical properties with a Young's modulus of 21 GPa and an ultimate strength of 320 MPa. Moreover, hemicellulose imparts recyclability from the dried state. Altogether, this native CNF represents a class of colloidally stable, eco-friendly, low-cost CNF of small diameter for large-scale applications of nanopaper and nanomaterials.

  • 33.
    Zhao, Mengxiao
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Asta, Nadia
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Robertsén, Leif
    Kemira R&D Center, Luoteisrinne 2, 02270 Espoo, Finland.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Pettersson, Torbjörn
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Exploration of the molecular mechanisms behind paper strength additives using model cellulose surfaces, filaments and beadsManuskript (preprint) (Övrigt vetenskapligt)
1 - 33 av 33
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf