Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Mottola, Luca
    et al.
    Swedish Inst Comp Sci, Box 1263, S-16428 Kista, Sweden..
    Voigt, Thiemo
    Swedish Inst Comp Sci, Box 1263, S-16428 Kista, Sweden..
    Gonzalez, Ignacio
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Karoumi, Raid
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    From the Desk to the Field: Recent Trends in Deploying Wireless Sensor Networks for Monitoring Civil Structures2011In: 2011 IEEE SENSORS, IEEE , 2011, p. 62-65Conference paper (Refereed)
    Abstract [en]

    Wireless Sensor Networks (WSNs) leverage battery-powered embedded devices to sense from and act on the environment. Their characteristics are at odds with the lifetime requirements in monitoring of civil structures. In this paper, we briefly describe the challenges at stake and how to address them, drawing from recent literature and our own real-world experience. Hardware solutions include MEMS sensors and power-efficient memories. Duty-cycled and batch operation, as well as forms of distributed processing are software techniques to reduce the energy invested in radio communication-the major energy drain in WSNs. We then conclude with an outlook on an ongoing Indo-Swedish project on monitoring the integrity of railway bridges using WSNs.

  • 2.
    Neves, Ana C.
    et al.
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Leander, John
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Gonzalez, Ignacio
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    Karoumi, Raid
    KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
    An approach to decision-making analysis for implementation of structural health monitoring in bridges2019In: Structural Control and Health Monitoring: The Bulletin of ACS, ISSN 1545-2255, E-ISSN 1545-2263, Vol. 26, no 6, article id e2352Article in journal (Refereed)
    Abstract [en]

    Adverse situations such as prolonged downtime of a structure, unnecessary inspections, expensive allocation of personal and equipment, deficient structural performance, or failure can be avoided by using structural health monitoring (SHM). Enhanced structural safety is the leading reason for its implementation, but one of the remaining obstacles to fully implement SHM systems deals with justifying their economic benefit. At any point in time, the preference towards one particular action depends on factors such as the probability of the triggered events and their consequences. All the possible decisions and relevant information can be illustrated by decision tree models, and the optimal decision corresponds to the one with the highest utility. Applying the Bayesian Theorem, the assumed prior probabilities of the structural state are updated in the light of new information provided by a system and the optimal decision is revised. This paper proposes a dynamic decision-making framework to manage civil engineering structures, where the ultimate goal is to achieve greater overall economy without jeopardizing safety. This paper covers a case study of a bridge where the optimal SHM and maintenance decisions are determined in the context of different scenarios in which the event probabilities and associated costs are made-up.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf