Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Al-Soubaihi, Rola
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Furesi, G.
    Saoud, K. M.
    Al-Muhtaseb, S. A.
    Khatat, A. E.
    Delogu, L. G.
    Dutta, Joydeep
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Silica and carbon decorated silica nanosheet impact on primary human immune cells2018In: Colloids and Surfaces B: Biointerfaces, ISSN 0927-7765, E-ISSN 1873-4367, Vol. 172, p. 779-789Article in journal (Refereed)
    Abstract [en]

    Silica nanosheets (SiO 2 NS) are considered to be a promising material in clinical practice for diagnosis and therapy applications. However, an appropriate surface functionalization is essential to guarantee high biocompatibility and molecule loading ability. Although SiO 2 NS are chemically stable, its effects on immune systems are still being explored. In this work, we successfully synthesized a novel 2D multilayer SiO 2 NS and SiO 2 NS coated with carbon (C/SiO 2 NS), and evaluated their impact on human Peripheral Blood Mononuclear Cells (PBMCs) and some immune cell subpopulations. We demonstrated that the immune response is strongly dependent on the surface functionalities of the SiO 2 NS. Ex vivo experiments showed an increase in biocompatibility of C/SiO 2 NS compared to SiO 2 NS, resulting in a lowering of hemoglobin release together with a reduction in cellular toxicity and cellular activation. However, none of them are directly involved in the activation of the acute inflammation process with a consequent release of pro-inflammatory cytokines. The obtained results provide an important direction towards the biomedical applications of silica nanosheets, rendering them an attractive material for the development of future immunological therapies.

  • 2.
    Al-Soubaihi, Rola
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Saoud, K. M.
    Virginia Commonwealth University in Qatar, Libral Arts and Sciences Program, P.O. Box 8095, Doha, Qatar.
    Fei, Ye
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Zar Myint, M. T.
    Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Muscat, PC 123, Oman.
    Saeed, S.
    Department of Chemistry, Paksitan Institute of Engineering and Applied Sciences (PIEAS), PO Nilore, Islamabad, 45650, Pakistan.
    Dutta, Joydeep
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Synthesis of hierarchically porous silica aerogel supported Palladium catalyst for low-temperature CO oxidation under ignition/extinction conditions2020In: Microporous and Mesoporous Materials, ISSN 1387-1811, E-ISSN 1873-3093, Vol. 292, article id 109758Article in journal (Refereed)
    Abstract [en]

    Synthesis of well-dispersed palladium nanoparticles within silica aerogel pores with controlled size was carried out using sol-gel synthesis under supercritical ethanol drying. The high concentration of silanol groups on silica (SiO2) surface facilitated a superior palladium (Pd) loading up to 10 wt %. The synthesized Pd/SiO2 nanocomposite aerogels were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopic methods. The silica aerogel supported catalysts were found to have a wide pore size distribution. TEM investigations confirmed that Pd nanocrystals were located within the SiO2 microspores and mesopores. The catalyst was evaluated for carbon monoxide (CO) oxidation reaction under ignition/extinction conditions. The synthesized catalyst demonstrated a high catalytic activity at low operating temperatures (<200 °C) compared to unsupported Pd nanoparticles or bare SiO2 aerogels. This enhancement in CO oxidation activity with Pd/SiO2 aerogel catalysts are attributed to the small Pd particles, Pd interaction with the surface of the underlying SiO2 and the better dispersion of Pd particles within the SiO2 pores. Porosity played a more important role during the extinction cycle as a result of the slow dissipation of the heat leading to hysteresis. We demonstrate the influence of porosity of catalyst supports on the size, dispersion, and catalytic activity of Pd nanoparticles.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf