Endre søk
Begrens søket
1 - 9 of 9
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abraham, Mark James
    et al.
    KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Apostolov, Rossen
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Parallelldatorcentrum, PDC.
    Barnoud, Jonathan
    Univ Groningen, NL-9712 CP Groningen, Netherlands.;Univ Bristol, Intangible Real Lab, Bristol, Avon, England..
    Bauer, Paul
    KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Blau, Christian
    KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Bonvin, Alexandre M. J. J.
    Univ Utrecht, Bijvoet Ctr, Fac Sci, Utrecht, Netherlands..
    Chavent, Matthieu
    Univ Paul Sabatier, IPBS, F-31062 Toulouse, France..
    Chodera, John
    Mem Sloan Kettering Canc Ctr, Sloan Kettering Inst, Computat & Syst Biol Program, New York, NY 10065 USA..
    Condic-Jurkic, Karmen
    Mem Sloan Kettering Canc Ctr, Sloan Kettering Inst, Computat & Syst Biol Program, New York, NY 10065 USA.;Open Force Field Consortium, La Jolla, CA USA..
    Delemotte, Lucie
    KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Grubmueller, Helmut
    Max Planck Inst Biophys Chem, D-37077 Gottingen, Germany..
    Howard, Rebecca
    KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Jordan, E. Joseph
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Box 1031, SE-17121 Solna, Sweden..
    Lindahl, Erik
    KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Ollila, O. H. Samuli
    Univ Helsinki, Inst Biotechnol, SF-00100 Helsinki, Finland..
    Selent, Jana
    Pompeu Fabra Univ, Hosp del Mar Med Res Inst IMIM, Res Programme Biomed Informat, Barcelona 08002, Spain.;Pompeu Fabra Univ, Dept Expt & Hlth Sci, Barcelona 08002, Spain..
    Smith, Daniel G. A.
    Mol Sci Software Inst, Blacksburg, VA 24060 USA..
    Stansfeld, Phillip J.
    Univ Oxford, Dept Biochem, Oxford OX1 2JD, England.;Univ Warwick, Sch Life Sci, Coventry CV4 7AL, W Midlands, England.;Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England..
    Tiemann, Johanna K. S.
    Univ Leipzig, Fac Med, Inst Med Phys & Biophys, D-04107 Leipzig, Germany..
    Trellet, Mikael
    Univ Utrecht, Bijvoet Ctr, Fac Sci, Utrecht, Netherlands..
    Woods, Christopher
    Univ Bristol, Bristol BS8 1TH, Avon, England..
    Zhmurov, Artem
    KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Sharing Data from Molecular Simulations2019Inngår i: Journal of Chemical Information and Modeling, ISSN 1549-9596, E-ISSN 1549-960X, Vol. 59, nr 10, s. 4093-4099Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Given the need for modern researchers to produce open, reproducible scientific output, the lack of standards and best practices for sharing data and workflows used to produce and analyze molecular dynamics (MD) simulations has become an important issue in the field. There are now multiple well-established packages to perform molecular dynamics simulations, often highly tuned for exploiting specific classes of hardware, each with strong communities surrounding them, but with very limited interoperability/transferability options. Thus, the choice of the software package often dictates the workflow for both simulation production and analysis. The level of detail in documenting the workflows and analysis code varies greatly in published work, hindering reproducibility of the reported results and the ability for other researchers to build on these studies. An increasing number of researchers are motivated to make their data available, but many challenges remain in order to effectively share and reuse simulation data. To discuss these and other issues related to best practices in the field in general, we organized a workshop in November 2018 (https://bioexcel.eu/events/workshop-on-sharing-data-from-molecular-simulations/). Here, we present a brief overview of this workshop and topics discussed. We hope this effort will spark further conversation in the MD community to pave the way toward more open, interoperable, and reproducible outputs coming from research studies using MD simulations.

  • 2.
    Apostolov, Rossen
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Parallelldatorcentrum, PDC.
    Axner, Lilit
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Parallelldatorcentrum, PDC.
    Agren, Hans
    Ayugade, Eduard
    Duta, Mihai
    Gelpi, Jose Luis
    Gimenez, Judit
    Goni, Ramon
    Hess, Berk
    KTH, Skolan för teknikvetenskap (SCI), Teoretisk fysik, Beräkningsbiofysik.
    Jamitzky, Ferdinand
    Kranzmuller, Dieter
    Labarta, Jesus
    Laure, Erwin
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Parallelldatorcentrum, PDC.
    Lindahl, Erik
    KTH, Skolan för teknikvetenskap (SCI), Teoretisk fysik, Beräkningsbiofysik.
    Orozco, Modesto
    Peterson, Magnus
    Satzger, Helmut
    Trefethen, Anne
    Scalable Software Services for Life Science2011Inngår i: Proceedings of 9th HealthGrid conference, 2011Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Life Science is developing into one of the largest e- Infrastructure users in Europe, in part due to the ever-growing amount of biological data. Modern drug design typically includes both sequence bioinformatics, in silico virtual screening, and free energy calculations, e.g. of drug binding. This development will accelerate tremendously, and puts high demands on simulation software and support services. e-Infrastructure projects such as PRACE/DEISA have made important advances on hardware and scalability, but have largely been focused on theoretical scalability for large systems, while typical life science applications rather concern small-to-medium size molecules. Here, we propose to address this with by implementing new techniques for efficient small-system parallelization combined with throughput and ensemble computing to enable the life science community to exploit the largest next-generation e-Infrastructures. We will also build a new cross-disciplinary Competence Network for all of life science, to position Europe as the world-leading community for development and maintenance of this software e-Infrastructure. Specifically, we will (1) develop new hierarchical parallelization approaches explicitly based on ensemble and high-throughput computing for new multi-core and streaming/GPU architectures, and establish open software standards for data storage and exchange, (2) implement, document, and maintain such techniques in pilot European open-source codes such as the widely used GROMACS & DALTON, a new application for ensemble simulation (DISCRETE), and large-scale bioinformatics protein annotation, (3) create a Competence Centre for scalable life science software to strengthen Europe as a major software provider and to enable the community to exploit e-Infrastructures to their full extent. This Competence Network will provide training and support infrastructure, and establish a long-term framework for maintenance and optimization of life science codes.

  • 3. Kutzner, C.
    et al.
    Apostolov, Rossen
    KTH, Skolan för teknikvetenskap (SCI), Teoretisk fysik, Beräkningsbiofysik. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Parallelldatorcentrum, PDC.
    Hess, Berk
    KTH, Skolan för teknikvetenskap (SCI), Teoretisk fysik, Beräkningsbiofysik.
    Grubmüller, H.
    Scaling of the GROMACS 4.6 molecular dynamics code on SuperMUC2014Inngår i: Advances in Parallel Computing, ISSN 0927-5452, E-ISSN 1879-808X, Vol. 25, s. 722-727Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Here we report on the performance of GROMACS 4.6 on the SuperMUC cluster at the Leibniz Rechenzentrum in Garching. We carried out benchmarks with three biomolecular systems consisting of eighty thousand to twelve million atoms in a strong scaling test each. The twelve million atom simulation system reached a performance of 49 nanoseconds per day on 32,768 cores.

  • 4.
    Lundborg, Magnus
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Teoretisk fysik. KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Apostolov, Rossen
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Parallelldatorcentrum, PDC.
    Spångberg, Daniel
    Gärdenäs, Anders
    van der Spoel, David
    Lindahl, Erik
    KTH, Skolan för teknikvetenskap (SCI), Teoretisk fysik, Beräkningsbiofysik. KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    An Efficient and Extensible Format, Library, and API for Binary Trajectory Data from Molecular Simulations2014Inngår i: Journal of Computational Chemistry, ISSN 0192-8651, E-ISSN 1096-987X, Vol. 35, nr 3, s. 260-269Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Molecular dynamics simulations is an important application in theoretical chemistry, and with the large high-performance computing resources available today the programs also generate huge amounts of output data. In particular in life sciences, with complex biomolecules such as proteins, simulation projects regularly deal with several terabytes of data. Apart from the need for more cost-efficient storage, it is increasingly important to be able to archive data, secure the integrity against disk or file transfer errors, to provide rapid access, and facilitate exchange of data through open interfaces. There is already a whole range of different formats used, but few if any of them (including our previous ones) fulfill all these goals. To address these shortcomings, we present Trajectory Next Generation (TNG)a flexible but highly optimized and efficient file format designed with interoperability in mind. TNG both provides state-of-the-art multiframe compression as well as a container framework that will make it possible to extend it with new compression algorithms without modifications in programs using it. TNG will be the new file format in the next major release of the GROMACS package, but it has been implemented as a separate library and API with liberal licensing to enable wide adoption both in academic and commercial codes.

  • 5.
    Natarajan Arul, Murugan
    et al.
    KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi.
    Apostolov, Rossen Pavlov
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Parallelldatorcentrum, PDC.
    Rinkevicius, Zilvinas
    KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi.
    Kongsted, Jacob
    epartment of Physics, Chemistry and Pharmacy, University of Southern Denmark.
    Lindahl, Erik
    KTH, Skolan för teknikvetenskap (SCI), Teoretisk fysik, Beräkningsbiofysik.
    Ågren, Hans
    KTH, Skolan för bioteknologi (BIO), Teoretisk kemi och biologi.
    Association dynamics and linear and nonlinear optical properties of an N-acetylaladanamide probe in a POPC membrane2013Inngår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 135, nr 36, s. 13590-13597Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Along with the growing evidence that relates membrane abnormalities to various diseases, biological membranes have been acknowledged as targets for therapy. Any such abnormality in the membrane structure alters the membrane potential which in principle can be captured by measuring properties of specific optical probes. There exists by now many molecular probes with absorption and fluorescence properties that are sensitive to local membrane structure and to the membrane potential. To suggest new high-performance optical probes for membrane-potential imaging it is important to understand in detail the membrane-induced structural changes in the probe, the membrane association dynamics of the probe, and its membrane-specific optical properties. To contribute to this effort, we here study an optical probe, N-acetylaladanamide (NAAA), in the presence of a POPC lipid bilayer using a multiscale integrated approach to assess the probe structure, dynamics, and optical properties in its membrane-bound status and in water solvent. We find that the probe eventually assimilates into the membrane with a specific orientation where the hydrophobic part of the probe is buried inside the lipid bilayer, while the hydrophilic part is exposed to the water solvent. The computed absorption maximum is red-shifted when compared to the gas phase. The computations of the two-photon absorption and second harmonic generation cross sections of the NAAA probe in its membrane-bound state which is of its first kind in the literature suggest that this probe can be used for imaging the membrane potential using nonlinear optical microscopy.

  • 6. Paulsen, Peter Aasted
    et al.
    Jurkowski, Wiktor
    Apostolov, Rossen
    Centre for Membrane Pumps in Cells and Disease, Danish National Research Foundation, Denmark.
    Lindahl, Erik
    KTH, Skolan för teknikvetenskap (SCI), Teoretisk fysik, Beräkningsbiofysik. KTH, Centra, SeRC - Swedish e-Science Research Centre. Center for Biomembrane Research, Department of Biochemistry & Biophysics, Stockholm University, Sweden.
    Nissen, Poul
    Poulsen, Hanne
    The C-terminal cavity of the Na,K-ATPase analyzed by docking and electrophysiology2013Inngår i: Molecular membrane biology, ISSN 0968-7688, E-ISSN 1464-5203, Vol. 30, nr 2, s. 195-205Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Na,K-ATPase is essential to all animals, since it maintains the electrochemical gradients that energize the plasma membrane. Naturally occurring inhibitors of the pump from plants have been used pharmaceutically in cardiac treatment for centuries. The inhibitors block the pump by binding on its extracellular side and thereby locking it. To explore the possibilities for designing an alternative way of targeting the pump function, we have examined the structural requirements for binding to a pocket that accommodates the two C-terminal residues, YY, in the crystal structures of the pump. To cover the sample space of two residues, we first performed docking studies with the 400 possible dipeptides. For validation of the in silico predictions, pumps with 13 dipeptide sequences replacing the C-terminal YY were expressed in Xenopus laevis oocytes and examined with electrophysiology. Our data show a significant correlation between the docking scores from two different methods and the experimentally determined sodium affinities, which strengthens the previous hypothesis that sodium binding is coupled to docking of the C-terminus. From the dipeptides that dock the best and better than wild-type YY, it may therefore be possible to develop specific drugs targeting a previously unexplored binding pocket in the sodium pump.

  • 7.
    Pronk, Sander
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Teoretisk fysik, Beräkningsbiofysik. KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Pall, Szilard
    KTH, Skolan för teknikvetenskap (SCI), Teoretisk fysik, Beräkningsbiofysik. KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Schulz, Roland
    Larsson, Per
    Bjelkmar, Pär
    Apostolov, Rossen
    KTH, Skolan för teknikvetenskap (SCI), Teoretisk fysik, Beräkningsbiofysik. KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Shirts, Michael R.
    Smith, Jeremy C.
    Kasson, Peter M.
    van der Spoel, David
    Hess, Berk
    KTH, Skolan för teknikvetenskap (SCI), Teoretisk fysik, Beräkningsbiofysik. KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Lindahl, Erik
    KTH, Skolan för teknikvetenskap (SCI), Teoretisk fysik, Beräkningsbiofysik. KTH, Centra, Science for Life Laboratory, SciLifeLab.
    GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit2013Inngår i: Bioinformatics, ISSN 1367-4803, E-ISSN 1367-4811, Vol. 29, nr 7, s. 845-854Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Motivation: Molecular simulation has historically been a low-throughput technique, but faster computers and increasing amounts of genomic and structural data are changing this by enabling large-scale automated simulation of, for instance, many conformers or mutants of biomolecules with or without a range of ligands. At the same time, advances in performance and scaling now make it possible to model complex biomolecular interaction and function in a manner directly testable by experiment. These applications share a need for fast and efficient software that can be deployed on massive scale in clusters, web servers, distributed computing or cloud resources. Results: Here, we present a range of new simulation algorithms and features developed during the past 4 years, leading up to the GROMACS 4.5 software package. The software now automatically handles wide classes of biomolecules, such as proteins, nucleic acids and lipids, and comes with all commonly used force fields for these molecules built-in. GROMACS supports several implicit solvent models, as well as new free-energy algorithms, and the software now uses multithreading for efficient parallelization even on low-end systems, including windows-based workstations. Together with hand-tuned assembly kernels and state-of-the-art parallelization, this provides extremely high performance and cost efficiency for high-throughput as well as massively parallel simulations.

    Fulltekst (pdf)
    fulltext
  • 8.
    Tsourtou, Flora D.
    et al.
    Univ Patras, Dept Chem Engn, GR-26504 Patras, Greece.;FORTH ICE HT, GR-26504 Patras, Greece..
    Peristeras, Loukas D.
    Natl Ctr Sci Res Demokritos, Mol Thermodynam & Modelling Mat Lab, Inst Nanoscicnce & Nanotechnol, GR-15310 Athens, Greece..
    Apostolov, Rossen
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Parallelldatorcentrum, PDC.
    Mavrantzas, Vlasis G.
    Univ Patras, Dept Chem Engn, GR-26504 Patras, Greece.;FORTH ICE HT, GR-26504 Patras, Greece.;Swiss Fed Inst Technol, Dept Mech & Proc Engn, Particle Technol Lab, CH-8092 Zurich, Switzerland..
    Molecular Dynamics Simulation of Amorphous Poly(3-hexylthiophene)2020Inngår i: Macromolecules, ISSN 0024-9297, E-ISSN 1520-5835, Vol. 53, nr 18, s. 7810-7824Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Molecular dynamics (MD) simulations are employed to study the effect of chain length and temperature on the density and conformational properties of regioregular poly(3-hexylthiophene), also denoted as RR-P3HT, in its pure amorphous phase. First, several widely used all-atom force fields (FFs) currently available in the literature are evaluated by comparing their predictions for the density, mean-square chain end-to-end distance, mean-square chain radius-of-gyration, and persistence length of RR-P3HT oligomers at temperatures above their melting point with the limited available experimental data in the literature. Then, with one of the most promising from these FFs, we extend the MD simulations to higher-chain-length P3HT systems (containing up to 150 monomers per chain) at various temperatures. The MD results indicate that the density and persistence length of amorphous P3HT increase slightly with chain length approaching limiting asymptotic values equal to 0.788 +/- 0.003 g cm(-3) and 21 +/- 0.4 angstrom, respectively, at temperature T = 700 K and pressure P = 1 atm. This is attributed to excess chain end free volume effects that are significant at low molecular weights. On the contrary, the effective conjugation length, which is found to become larger than the persistence length only above a certain molecular weight, shows a stronger dependence on chain length. Both of these characteristic lengths are found to increase with decreasing temperature due to the increasing relative population of planar (cis and trans) conformational states of the inter-ring torsion angle. The probability distribution of the maximum length of conjugated segments along a P3HT chain coincides with the theoretical distribution of a longest run of "heads" in a coin-flip experiment. Our MD results suggest that short-chain-length RR-P3HT chains in their bulk amorphous phase are semiflexible but, as their molecular weight increases, they adopt more and more random coil conformations, especially at higher temperatures.

  • 9.
    Vistoli, Giulio
    et al.
    Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy.
    Manelfi, Candida
    EXSCALATE, Dompé Farmaceutici S.p.A, Napoli, Italy.
    Talarico, Carmine
    EXSCALATE, Dompé Farmaceutici S.p.A, Napoli, Italy.
    Fava, Anna
    EXSCALATE, Dompé Farmaceutici S.p.A, Napoli, Italy.
    Warshel, Arieh
    Department of Chemistry, University of Southern California, Los Angeles, USA.
    Tetko, Igor V.
    BIGCHEM GmbH, Valerystr, Germany; Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich-Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.
    Apostolov, Rossen
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Parallelldatorcentrum, PDC.
    Ye, Yang
    Natural Products Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
    Latini, Chiara
    High Performance Computing Dept, CINECA, Casalecchio di Reno, Bologna, Italy.
    Ficarelli, Federico
    High Performance Computing Dept, CINECA, Casalecchio di Reno, Bologna, Italy.
    Palermo, Gianluca
    DEIB–Politecnico di Milano, Milano, Italy.
    Gadioli, Davide
    DEIB–Politecnico di Milano, Milano, Italy.
    Vitali, Emanuele
    DEIB–Politecnico di Milano, Milano, Italy.
    Varriale, Gaetano
    SAS Institute Srl, Roma, Italy.
    Pisapia, Vincenzo
    SAS Institute Srl, Roma, Italy.
    Scaturro, Marco
    SAS Institute Srl, Milano, Italy.
    Coletti, Silvano
    Chelonia SA (AG), Allschwil, Switzerland.
    Gregori, Daniele
    E4 Computer Engineering S.p.A, Scandiano (RE), Italy, RE.
    Gruffat, Daniel
    Nanome Inc, San Diego, CA, USA.
    Leija, Edgardo
    Nanome Inc, San Diego, CA, USA.
    Hessenauer, Sam
    Nanome Inc, San Diego, CA, USA.
    Delbianco, Alberto
    EnI, San Donato Milanese, Italy.
    Allegretti, Marcello
    Dompé Farmaceutici S.p.A, L’Aquila, Italy.
    Beccari, Andrea R.
    EXSCALATE, Dompé Farmaceutici S.p.A, Napoli, Italy.
    MEDIATE - Molecular DockIng at homE: Turning collaborative simulations into therapeutic solutions2023Inngår i: Expert Opinion on Drug Discovery, ISSN 1746-0441, E-ISSN 1746-045X, Vol. 18, nr 8, s. 821-833Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Introduction: Collaborative computing has attracted great interest in the possibility of joining the efforts of researchers worldwide. Its relevance has further increased during the pandemic crisis since it allows for the strengthening of scientific collaborations while avoiding physical interactions. Thus, the E4C consortium presents the MEDIATE initiative which invited researchers to contribute via their virtual screening simulations that will be combined with AI-based consensus approaches to provide robust and method-independent predictions. The best compounds will be tested, and the biological results will be shared with the scientific community. Areas covered: In this paper, the MEDIATE initiative is described. This shares compounds’ libraries and protein structures prepared to perform standardized virtual screenings. Preliminary analyses are also reported which provide encouraging results emphasizing the MEDIATE initiative’s capacity to identify active compounds. Expert opinion: Structure-based virtual screening is well-suited for collaborative projects provided that the participating researchers work on the same input file. Until now, such a strategy was rarely pursued and most initiatives in the field were organized as challenges. The MEDIATE platform is focused on SARS-CoV-2 targets but can be seen as a prototype which can be utilized to perform collaborative virtual screening campaigns in any therapeutic field by sharing the appropriate input files.

1 - 9 of 9
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf