Endre søk
Begrens søket
1 - 7 of 7
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abraham, Mark James
    et al.
    KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Apostolov, Rossen
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Parallelldatorcentrum, PDC.
    Barnoud, Jonathan
    Univ Groningen, NL-9712 CP Groningen, Netherlands.;Univ Bristol, Intangible Real Lab, Bristol, Avon, England..
    Bauer, Paul
    KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Blau, Christian
    KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Bonvin, Alexandre M. J. J.
    Univ Utrecht, Bijvoet Ctr, Fac Sci, Utrecht, Netherlands..
    Chavent, Matthieu
    Univ Paul Sabatier, IPBS, F-31062 Toulouse, France..
    Chodera, John
    Mem Sloan Kettering Canc Ctr, Sloan Kettering Inst, Computat & Syst Biol Program, New York, NY 10065 USA..
    Condic-Jurkic, Karmen
    Mem Sloan Kettering Canc Ctr, Sloan Kettering Inst, Computat & Syst Biol Program, New York, NY 10065 USA.;Open Force Field Consortium, La Jolla, CA USA..
    Delemotte, Lucie
    KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Grubmueller, Helmut
    Max Planck Inst Biophys Chem, D-37077 Gottingen, Germany..
    Howard, Rebecca
    KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Jordan, E. Joseph
    Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Box 1031, SE-17121 Solna, Sweden..
    Lindahl, Erik
    KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Ollila, O. H. Samuli
    Univ Helsinki, Inst Biotechnol, SF-00100 Helsinki, Finland..
    Selent, Jana
    Pompeu Fabra Univ, Hosp del Mar Med Res Inst IMIM, Res Programme Biomed Informat, Barcelona 08002, Spain.;Pompeu Fabra Univ, Dept Expt & Hlth Sci, Barcelona 08002, Spain..
    Smith, Daniel G. A.
    Mol Sci Software Inst, Blacksburg, VA 24060 USA..
    Stansfeld, Phillip J.
    Univ Oxford, Dept Biochem, Oxford OX1 2JD, England.;Univ Warwick, Sch Life Sci, Coventry CV4 7AL, W Midlands, England.;Univ Warwick, Dept Chem, Coventry CV4 7AL, W Midlands, England..
    Tiemann, Johanna K. S.
    Univ Leipzig, Fac Med, Inst Med Phys & Biophys, D-04107 Leipzig, Germany..
    Trellet, Mikael
    Univ Utrecht, Bijvoet Ctr, Fac Sci, Utrecht, Netherlands..
    Woods, Christopher
    Univ Bristol, Bristol BS8 1TH, Avon, England..
    Zhmurov, Artem
    KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Sharing Data from Molecular Simulations2019Inngår i: Journal of Chemical Information and Modeling, ISSN 1549-9596, E-ISSN 1549-960X, Vol. 59, nr 10, s. 4093-4099Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Given the need for modern researchers to produce open, reproducible scientific output, the lack of standards and best practices for sharing data and workflows used to produce and analyze molecular dynamics (MD) simulations has become an important issue in the field. There are now multiple well-established packages to perform molecular dynamics simulations, often highly tuned for exploiting specific classes of hardware, each with strong communities surrounding them, but with very limited interoperability/transferability options. Thus, the choice of the software package often dictates the workflow for both simulation production and analysis. The level of detail in documenting the workflows and analysis code varies greatly in published work, hindering reproducibility of the reported results and the ability for other researchers to build on these studies. An increasing number of researchers are motivated to make their data available, but many challenges remain in order to effectively share and reuse simulation data. To discuss these and other issues related to best practices in the field in general, we organized a workshop in November 2018 (https://bioexcel.eu/events/workshop-on-sharing-data-from-molecular-simulations/). Here, we present a brief overview of this workshop and topics discussed. We hope this effort will spark further conversation in the MD community to pave the way toward more open, interoperable, and reproducible outputs coming from research studies using MD simulations.

  • 2.
    Asquith, Nathan L.
    et al.
    Univ Leeds, Leeds Inst Cardiovasc & Metab Med, Sch Med, Discovery & Translat Sci Dept, Leeds, England.;Boston Childrens Hosp, Harvard Med Sch, Vasc Biol Program, Karp Res Labs, Boston, MA USA..
    Duval, Cedric
    Univ Leeds, Leeds Inst Cardiovasc & Metab Med, Sch Med, Discovery & Translat Sci Dept, Leeds, England..
    Zhmurov, Artem
    KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Parallelldatorcentrum, PDC. EuroCC Natl Competence Ctr Sweden, Stockholm, Sweden.
    Baker, Stephen R.
    Univ Leeds, Leeds Inst Cardiovasc & Metab Med, Sch Med, Discovery & Translat Sci Dept, Leeds, England..
    McPherson, Helen R.
    Univ Leeds, Leeds Inst Cardiovasc & Metab Med, Sch Med, Discovery & Translat Sci Dept, Leeds, England..
    Domingues, Marco M.
    Univ Leeds, Leeds Inst Cardiovasc & Metab Med, Sch Med, Discovery & Translat Sci Dept, Leeds, England.;Univ Lisbon, Inst Mol Med, Fac Med, Lisbon, Portugal..
    Connell, Simon D. A.
    Univ Leeds, Sch Phys & Astron, Mol & Nanoscale Phys Grp, Leeds, England..
    Barsegov, Valeri
    Univ Massachusetts, Dept Chem, Lowell, MA USA..
    Ariens, Robert A. S.
    Univ Leeds, Leeds Inst Cardiovasc & Metab Med, Sch Med, Discovery & Translat Sci Dept, Leeds, England.;Univ Leeds, Leeds Inst Cardiovasc & Metab Med, Discovery & Translat Sci Dept, Leeds LS2 9JT, England..
    Fibrin protofibril packing and clot stability are enhanced by extended knob-hole interactions and catch-slip bonds2022Inngår i: Blood Advances, ISSN 2473-9529, Vol. 6, nr 13, s. 4015-4027Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Fibrin polymerization involves thrombin-mediated exposure of knobs on one monomer that bind to holes available on another, leading to the formation of fibers. In silico evidence has suggested that the classical A:a knob-hole interaction is enhanced by surrounding residues not directly involved in the binding pocket of hole a, via noncovalent interactions with knob A. We assessed the importance of extended knob-hole interactions by performing biochemical, biophysical, and in silico modeling studies on recombinant human fibrinogen variants with mutations at residues responsible for the extended interactions. Three single fibrinogen variants, yD297N, yE323Q, and yK356Q, and a triple variant yDEK (yD297N/yE323Q/yK356Q) were produced in a CHO (Chinese Hamster Ovary) cell expression system. Longitudinal protofibril growth probed by atomic force microscopy was disrupted for yD297N and enhanced for the yK356Q mutation. Initial polymerization rates were reduced for all variants in turbidimetric studies. Laser scanning confocal microscopy showed that yDEK and yE323Q produced denser clots, whereas yD297N and yK356Q were similar to wild type. Scanning electron microscopy and light scattering studies showed that fiber thickness and protofibril packing of the fibers were reduced for all variants. Clot viscoelastic analysis showed that only yDEK was more readily deformable. In silico modeling suggested that most variants displayed only slip-bond dissociation kinetics compared with biphasic catch-slip kinetics characteristics of wild type. These data provide new evidence for the role of extended interactions in supporting the classical knob-hole bonds involving catch-slip behavior in fibrin formation, clot structure, and clot mechanics.

  • 3. Fedorov, V. A.
    et al.
    Kholina, E. G.
    Kovalenko, I. B.
    Gudimchuk, N. B.
    Orekhov, P. S.
    Zhmurov, Artem
    KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Parallelldatorcentrum, PDC. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Update on Performance Analysis of Different Computational Architectures: Molecular Dynamics in Application to Protein-Protein Interactions2020Inngår i: Supercomputing Frontiers and Innovations, ISSN 2409-6008, Vol. 7, nr 4, s. 62-67Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Molecular dynamics has proved itself as a powerful computer simulation method to study dynamics, conformational changes, and interactions of biological macromolecules and their complexes. In order to achieve the best performance and efficiency, it is crucial to benchmark various hardware platforms for the simulations of realistic biomolecular systems with different size and timescale. Here, we compare performance and scalability of a number of commercially available computing architectures using all-atom and coarse-grained molecular dynamics simulations of water and the Ndc80-microtubule protein complex in the GROMACS-2019.4 package. We report typical single-node performance of various combinations of modern CPUs and GPUs, as well as multiple-node performance of the “Lomonosov-2” supercomputer. These data can be used as the practical guidelines for choosing optimal hardware for molecular dynamics simulations. 

  • 4.
    Jansen, Karin A.
    et al.
    AMOLF, Biol Soft Matter Grp, Utrecht, Netherlands.;UMC Utrecht, Dept Pathol, NL-3508 GA Utrecht, Netherlands..
    Zhmurov, Artem
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Parallelldatorcentrum, PDC. Sechenov Univ, Moscow 119991, Russia..
    Vos, Bart E.
    AMOLF, Biol Soft Matter Grp, Utrecht, Netherlands.;Univ Munster, Ctr Mol Biol Inflammat, Inst Cell Biol, Munster, Germany..
    Portale, Giuseppe
    Univ Groningen, Zernike Inst Adv Mat, Macromol Chem & New Polymer Mat, Nijenborgh 4, NL-9747 AG Groningen, Netherlands..
    Hermida-Merino, Daniel
    ESRF, DUBBLE CRG, Netherlands Org Sci Res NWO, 71 Ave Martyrs, F-38000 Grenoble, France..
    Litvinov, Rustem, I
    Univ Penn, Perelman Sch Med, Dept Cell & Dev Biol, Philadelphia, PA 19104 USA.;Kazan Fed Univ, Inst Fundamental Med & Biol, 18 Kremlyovskaya St, Kazan 420008, Russia..
    Tutwiler, Valerie
    Univ Penn, Perelman Sch Med, Dept Cell & Dev Biol, Philadelphia, PA 19104 USA..
    Kurniawan, Nicholas A.
    AMOLF, Biol Soft Matter Grp, Utrecht, Netherlands.;Eindhoven Univ Technol, Dept Biomed Engn, Eindhoven, Netherlands.;Eindhoven Univ Technol, Inst Complex Mol Syst, Eindhoven, Netherlands..
    Bras, Wim
    ESRF, DUBBLE CRG, Netherlands Org Sci Res NWO, 71 Ave Martyrs, F-38000 Grenoble, France.;Oak Ridge Natl Lab, Chem Sci Div, One Bethel Valley Rd, Oak Ridge, TN 37831 USA..
    Weisel, John W.
    Univ Penn, Perelman Sch Med, Dept Cell & Dev Biol, Philadelphia, PA 19104 USA..
    Barsegov, Valeri
    Univ Massachusetts, Dept Chem, 1 Univ Ave, Lowell, MA 01854 USA..
    Koenderink, Gijsje H.
    AMOLF, Biol Soft Matter Grp, Utrecht, Netherlands.;Delft Univ Technol, Kavli Inst Nanosci Delft, Dept Bionanosci, Maasweg 9, NL-2629 HZ Delft, Netherlands..
    Molecular packing structure of fibrin fibers resolved by X-ray scattering and molecular modeling2020Inngår i: Soft Matter, ISSN 1744-683X, E-ISSN 1744-6848, Vol. 16, nr 35, s. 8272-8283Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Fibrin is the major extracellular component of blood clots and a proteinaceous hydrogel used as a versatile biomaterial. Fibrin forms branched networks built of laterally associated double-stranded protofibrils. This multiscale hierarchical structure is crucial for the extraordinary mechanical resilience of blood clots, yet the structural basis of clot mechanical properties remains largely unclear due, in part, to the unresolved molecular packing of fibrin fibers. Here the packing structure of fibrin fibers is quantitatively assessed by combining Small Angle X-ray Scattering (SAXS) measurements of fibrin reconstituted under a wide range of conditions with computational molecular modeling of fibrin protofibrils. The number, positions, and intensities of the Bragg peaks observed in the SAXS experiments were reproduced computationally based on the all-atom molecular structure of reconstructed fibrin protofibrils. Specifically, the model correctly predicts the intensities of the reflections of the 22.5 nm axial repeat, corresponding to the half-staggered longitudinal arrangement of fibrin molecules. In addition, the SAXS measurements showed that protofibrils within fibrin fibers have a partially ordered lateral arrangement with a characteristic transverse repeat distance of 13 nm, irrespective of the fiber thickness. These findings provide fundamental insights into the molecular structure of fibrin clots that underlies their biological and physical properties.

  • 5.
    Kliuchnikov, Evgenii
    et al.
    Univ Massachusetts, Dept Chem, Lowell, MA 01854 USA..
    Klyshko, Eugene
    Univ Massachusetts, Dept Chem, Lowell, MA 01854 USA.;Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada..
    Kelly, Maria S.
    Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA..
    Zhmurov, Artem
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Parallelldatorcentrum, PDC.
    Dima, Ruxandra, I
    Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA..
    Marx, Kenneth A.
    Univ Massachusetts, Dept Chem, Lowell, MA 01854 USA..
    Barsegov, Valeri
    Univ Massachusetts, Dept Chem, Lowell, MA 01854 USA..
    Microtubule assembly and disassembly dynamics model: Exploring dynamic instability and identifying features of Microtubules' Growth, Catastrophe, Shortening, and Rescue2022Inngår i: Computational and Structural Biotechnology Journal, E-ISSN 2001-0370, Vol. 20, s. 953-974Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Microtubules (MTs), a cellular structure element, exhibit dynamic instability and can switch stochastically from growth to shortening; but the factors that trigger these processes at the molecular level are not understood. We developed a 3D Microtubule Assembly and Disassembly DYnamics (MADDY) model, based upon a bead-per-monomer representation of the alpha beta-tubulin dimers forming an MT lattice, stabilized by the lateral and longitudinal interactions between tubulin subunits. The model was parameterized against the experimental rates of MT growth and shortening, and pushing forces on the Dam1 protein complex due to protofilaments splaying out. Using the MADDY model, we carried out GPU-accelerated Langevin simulations to access dynamic instability behavior. By applying Machine Learning techniques, we identified the MT characteristics that distinguish simultaneously all four kinetic states: growth, catastrophe, shortening, and rescue. At the cellular 25 mu M tubulin concentration, the most important quantities are the MT length L, average longitudinal curvature kappa(long), MT tip width w, total energy of longitudinal interactions in MT lattice U-long, and the energies of longitudinal and lateral interactions required to complete MT to full cylinder U-long(add) and U-lat(add) . At high 250 mu M tubulin concentration, the most important characteristics are L, kappa(long), number of hydrolyzed alpha beta-tubulin dimers n(hyd) and number of lateral interactions per helical pitch n(lat) in MT lattice, energy of lateral interactions in MT lattice U-lat, and energy of longitudinal interactions in MT tip u(long). These results allow greater insights into what brings about kinetic state stability and the transitions between states involved in MT dynamic instability behavior.

  • 6.
    Kliuchnikov, Evgenii
    et al.
    Univ Massachusetts, Dept Chem, Lowell, MA 01854 USA..
    Zhmurov, Artem
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Parallelldatorcentrum, PDC.
    Marx, Kenneth A.
    Univ Massachusetts, Dept Chem, Lowell, MA 01854 USA..
    Mogilner, Alex
    NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10003 USA.;NYU, Dept Biol, 251 Mercer St, New York, NY 10003 USA..
    Barsegov, Valeri
    Univ Massachusetts, Dept Chem, Lowell, MA 01854 USA..
    CellDynaMo-stochastic reaction-diffusion-dynamics model: Application to search-and-capture process of mitotic spindle assembly2022Inngår i: PloS Computational Biology, ISSN 1553-734X, E-ISSN 1553-7358, Vol. 18, nr 6, artikkel-id e1010165Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We introduce a Stochastic Reaction-Diffusion-Dynamics Model (SRDDM) for simulations of cellular mechanochemical processes with high spatial and temporal resolution. The SRDDM is mapped into the CellDynaMo package, which couples the spatially inhomogeneous reaction-diffusion master equation to account for biochemical reactions and molecular transport within the Langevin Dynamics (LD) framework to describe dynamic mechanical processes. This computational infrastructure allows the simulation of hours of molecular machine dynamics in reasonable wall-clock time. We apply SRDDM to test performance of the Search-and-Capture of mitotic spindle assembly by simulating, in three spatial dimensions, dynamic instability of elastic microtubules anchored in two centrosomes, movement and deformations of geometrically realistic centromeres with flexible kinetochores and chromosome arms. Furthermore, the SRDDM describes the mechanics and kinetics of Ndc80 linkers mediating transient attachments of microtubules to the chromosomal kinetochores. The rates of these attachments and detachments depend upon phosphorylation states of the Ndc80 linkers, which are regulated in the model by explicitly accounting for the reactions of Aurora A and B kinase enzymes undergoing restricted diffusion. We find that there is an optimal rate of microtubule-kinetochore detachments which maximizes the accuracy of the chromosome connections, that adding chromosome arms to kinetochores improve the accuracy by slowing down chromosome movements, that Aurora A and kinetochore deformations have a small positive effect on the attachment accuracy, and that thermal fluctuations of the microtubules increase the rates of kinetochore capture and also improve the accuracy of spindle assembly. Author summary The CellDynaMo package models, in 3D, any cellular subsystem where sufficient detail of the macromolecular players and the kinetics of relevant reactions are available. The package is based on the Stochastic Reaction-Diffusion-Dynamics model that combines the stochastic description of chemical kinetics, Brownian diffusion-based description of molecular transport, and Langevin dynamics-based representation of mechanical processes most pertinent to the system. We apply the model to test the Search-and-Capture mechanism of mitotic spindle assembly. We find that there is an optimal rate of microtubule-kinetochore detachments which maximizes the accuracy of chromosome connections, that chromosome arms improve the attachment accuracy by slowing down chromosome movements, that Aurora A kinase and kinetochore deformations have small positive effects on the accuracy, and that thermal fluctuations of the microtubules increase the rates of kinetochore capture and also improve the accuracy.

  • 7.
    Pall, Szilard
    et al.
    KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Parallelldatorcentrum, PDC.
    Zhmurov, Artem
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Parallelldatorcentrum, PDC. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Bauer, Paul
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biofysik. KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Centra, SeRC - Swedish e-Science Research Centre.
    Abraham, Mark James
    KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biofysik.
    Lundborg, Magnus
    ERCO Pharma AB, Stockholm, Sweden..
    Gray, Alan
    NVIDIA Corp, Reading, Berks, England..
    Hess, Berk
    KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biofysik.
    Lindahl, Erik
    KTH, Centra, SeRC - Swedish e-Science Research Centre. KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biofysik. Stockholm Univ, Dept Biochem & Biophys, Sci Life Lab, Box 1031, S-17121 Solna, Sweden..
    Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS2020Inngår i: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 153, nr 13, artikkel-id 134110Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The introduction of accelerator devices such as graphics processing units (GPUs) has had profound impact on molecular dynamics simulations and has enabled order-of-magnitude performance advances using commodity hardware. To fully reap these benefits, it has been necessary to reformulate some of the most fundamental algorithms, including the Verlet list, pair searching, and cutoffs. Here, we present the heterogeneous parallelization and acceleration design of molecular dynamics implemented in the GROMACS codebase over the last decade. The setup involves a general cluster-based approach to pair lists and non-bonded pair interactions that utilizes both GPU and central processing unit (CPU) single instruction, multiple data acceleration efficiently, including the ability to load-balance tasks between CPUs and GPUs. The algorithm work efficiency is tuned for each type of hardware, and to use accelerators more efficiently, we introduce dual pair lists with rolling pruning updates. Combined with new direct GPU-GPU communication and GPU integration, this enables excellent performance from single GPU simulations through strong scaling across multiple GPUs and efficient multi-node parallelization.

1 - 7 of 7
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf