kth.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Mohamed, Alaa
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM. Mechanical Design and Production Engineering Department, Cairo University, Giza, Egypt.
    El-Sayed, R.
    Osman, T. A.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun A.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Uheida, Abdusalam
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Composite nanofibers for highly efficient photocatalytic degradation of organic dyes from contaminated water2016In: Environmental Research, ISSN 0013-9351, E-ISSN 1096-0953, Vol. 145, p. 18-25Article in journal (Refereed)
    Abstract [en]

    In this study highly efficient photocatalyst based on composite nanofibers containing polyacrylonitrile (PAN), carbon nanotubes (CNT), and surface functionalized TiO2 nanoparticles was developed. The composite nanofibers were fabricated using electrospinning technique followed by chemical crosslinking. The surface modification and morphology changes of the fabricated composite nanofibers were examined through SEM, TEM, and FTIR analysis. The photocatalytic performance of the composite nanofibers for the degradation of model molecules, methylene blue and indigo carmine, under UV irradiation in aqueous solutions was investigated. The results demonstrated that high photodegradation efficiency was obtained in a short time and at low power intensity compared to other reported studies. The effective factors on the degradation of the dyes, such as the amount of catalyst, solution pH and irradiation time were investigated. The experimental kinetic data were fitted using pseudo-first order model. The effect of the composite nanofibers as individual components on the degradation efficiency of MB and IC was evaluated in order to understand the overall photodegradation mechanism. The results obtained showed that all the components possess significant effect on the photodegradation activity of the composite nanofibers. The stability studies demonstrated that the photodegradation efficiency can remain constant at the level of 99% after five consecutive cycles.

  • 2.
    Mohamed, Alaa
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics. Cairo University, Egypt.
    Nasser, W. S.
    Osman, T. A.
    Toprak, Muhammet
    KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
    Muhammed, Mamoun
    KTH, School of Engineering Sciences (SCI), Applied Physics. Alexandria University, Egypt.
    Uheida, Abdusalam
    KTH, School of Engineering Sciences (SCI), Applied Physics.
    Removal of chromium (VI) from aqueous solutions using surface modified composite nanofibers2017In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 505, p. 682-691Article in journal (Refereed)
    Abstract [en]

    A novel material composite nanofibers (PAN-CNT/TiO2-NH2) based on adsorption of Cr(VI) ions, was applied. Polyacrylonitrile (PAN) and carbon nanotube (CNTs)/titanium dioxide nanoparticles (TiO2) functionalized with amine groups (TiO2-NH2) composite nanofibers have been fabricated by electrospinning. The nanostructures and the formation process mechanism of the obtained PAN-CNT/TiO2-NH2 composite nanofibers are investigated using FTIR, XRD, XPS, SEM, and TEM. The composite nanofibers were used as a novel adsorbent for removing toxic chromium Cr(VI) in aqueous solution. The kinetic study, adsorption isotherm, pH effect, initial concentration, and thermodynamic study were investigated in batch experiments. The composite nanofibers had a positive effect on the absorption of Cr(VI) ions under neutral and acidic conditions, and the saturated adsorption reached the highest when pH was 2. The adsorption equilibrium reached within 30 and 180 min with an initial solution concentration increasing from 10 to 300 mg/L, and the process can be better described using nonlinear pseudo first than nonlinear pseudo second order model and Intra-particle diffusion. Isotherm data fitted well using linear and nonlinear Langmuir, Freundlich, Redlich-Peterson, and Temkin isotherm adsorption model. Thermodynamic study showed that the adsorption process is exothermic. The adsorption capacity can remain up to 80% after 5 times usage, which show good durability performance. The adsorption mechanism was also studied by UV-vis and XPS.

  • 3.
    Mohamed, Alaa
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics. Akhbar El Yom Academy, Egypt.
    Osman, T. A.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Yilmaz, E.
    Uheida, Abdusalam
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Functional Materials, FNM.
    Visible light photocatalytic reduction of Cr(VI) by surface modified CNT/titanium dioxide composites nanofibers2016In: Journal of Molecular Catalysis A: Chemical, ISSN 1381-1169, E-ISSN 1873-314X, Vol. 424, p. 45-53Article in journal (Refereed)
    Abstract [en]

    In this work we report a highly efficient photocatalytic reduction of Cr(VI) based on PAN-CNT/TiO2-NH2 composite nanofibers fabricated by using electrospinning technique followed by chemical crosslinking of surface modified TiO2 NPs functionalized with amino group. The structure and morphology of the fabricated composite nanofibers were characterized by FTIR, SEM, TEM, TGA, and XPS. The results indicate that the composite nanofibers possess excellent photoreduction performance for Cr(VI) under visible light (125 W) after 30 min, which is much faster than previous reports. The effects of various experimental parameters such as catalyst dose, irradiation time, initial concentration of Cr(VI), and pH on the photoreduction efficiency of Cr(VI) were investigated. The highest photoreduction efficiency of Cr (VI) was obtained at low acidity and low amount of TiO2/CNT photocatalyst. The kinetic experimental data was attained and fitted well with a pseudo-first-order model. The UV–vis spectrophotometer and XPS analyses proved that chromate Cr(VI) was reduced to Cr(III). In addition, it can be concluded that the addition of the phenol enhances the photocatalytic reduction of Cr(VI). Furthermore, the photoreduction mechanism has also been discussed. Finally, the fabricated composite nanofibers were found to be stable after at least five regeneration cycles.

  • 4.
    Mohamed, Alaaeldin
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics. Cairo University, Egypt; Akhbar El Yom Academy, Egypt.
    Yousef, S.
    Ali Abdelnaby, M.
    Osman, T. A.
    Hamawandi, Bejan
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics. Alexandria University, Egypt.
    Uheida, Abdusalam
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.
    Photocatalytic degradation of organic dyes and enhanced mechanical properties of PAN/CNTs composite nanofibers2017In: Separation and Purification Technology, ISSN 1383-5866, E-ISSN 1873-3794, Vol. 182, p. 219-223Article in journal (Refereed)
    Abstract [en]

    This work describes the enhanced mechanical properties of the composite nanofibers and the photodegradation of two organic dyes using PAN/CNTs under UV irradiation at different volume concentration (0.05, 0.1, 0.2, and 0.3 wt.%). The composite nanofibers was performed with polyacrylonitrile (PAN), and carbon nanotubes (CNTs) by electrospinning process. The composite nanofibers structure and morphology is characterized by XRD, FTIR, SEM, and TEM. The result indicates that with increasing CNTs content, the mechanical properties of the composite nanofibers was enhanced, and became more elastic, and the elastic modulus increased drastically. The results of mechanical properties exhibit improvements in tensile strengths, and elastic modulus by 38% and 84% respectively, at only 0.05 wt.% CNTs. Moreover, photocatalytic degradation performance in short time and low power intensity was achieved comparison to earlier reports.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf