kth.sePublications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ribca, Iuliana
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Lignin-Based Thermosets with Tunable Mechanical and Morphological Properties: A Study of Structure-Property Relationships2023Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Nowadays, there is an urgent need to decrease our dependence on fossilresources and shift towards the use of renewable resources for advancingsustainable development. Utilizing renewable and bio-based raw materials,such as lignocellulosic biomass, for designing new materials is a promisingapproach to promote this objective. The main components of lignocellulosicbiomass are cellulose, hemicellulose, and lignin. Lignin is the most abundantaromatic biopolymer in nature and it is produced on a large scale fromchemical pulping processes as technical lignin. Lignin has the potential as asustainable and renewable alternative to fossil-based aromatics in variousapplications, e.g. thermosetting resins.

    Technical lignin has a complex and heterogeneous structure, with arelatively low chemical reactivity. It is characterized by a high dispersity, thepresence of various functional groups that are unevenly distributed along thelignin chains, and various interunit linkages between the monoaromatics. Toovercome the challenges associated with lignin heterogeneity, technicallignin can be fractionated and/or chemically modified.

    In this work, LignoBoost Kraft lignin was used as a starting material toproduce lignin-based thiol-ene thermosets. Firstly, lignin was fractionatedusing two approaches: 1) sequential solvent fractionation, and 2) microwaveassistedextraction. These fractionation approaches enabled access to ligninfractions with unique and tunable properties. Subsequently, lignin waschemically modified, in particular through allylation. Two allylation reagentswere used: allyl chloride and diallyl carbonate. The use of allyl chlorideenables a selective allylation of the phenolic OH groups, leaving the aliphaticand carboxylic acid OH groups unmodified. On the other hand, diallylcarbonate can react with all the aforementioned OH groups, leading to ahigher degree of allylation. Subsequently, allylated lignin was thermallycross-linked with various polyfunctional thiols, leading to thiol-enethermosets. The structure-property relationships of the thermosets wereinvestigated by varying several parameters, including the lignin source,fractionation approach, chemical modification, and thiol cross-linker. Byadjusting these parameters, various thermosets with tunable mechanical andmorphological properties were produced. Understanding the structurepropertyrelationships of these bio-based materials is crucial for identifyingpotential applications.

    Download full text (pdf)
    Lignin-Based Thermosets with Tunable Mechanical and Morphological Properties
  • 2.
    Ribca, Iuliana
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Jawerth, Marcus
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Brett, Calvin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany.
    Lawoko, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Schwartzkopf, Matthias
    Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany.
    Chumakov, Andrei
    Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany.
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany.
    Johansson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Exploring the Effects of Different Cross-Linkers on Lignin-Based Thermoset Properties and Morphologies2021In: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 9, no 4, p. 1692-1702Article in journal (Refereed)
    Abstract [en]

    The search for sustainable material solutions has put lignin as one of the prime candidates for aromatic building blocks in macromolecular materials. The present study aimed to demonstrate how lignin-based thermoset resins can be utilized in combination with different cross-linkers. Kraft lignin was used to produce thermosets with tunable mechanical and morphological properties. The lignin-based thermosets were obtained via a thermally induced thiol–ene reaction. The first part of this work was focused on Kraft lignin solvent fractionation and chemical modification of the ethanol soluble fraction. Chemical analysis indicated that the allylation process was selective toward phenolic hydroxyl groups. SAXS and SEM studies demonstrated that solvent fractionation and allylation processes affected the molecular and nanoscale morphological characteristics of lignin. The second part’s focus was on how the properties of thermosets can be tuned by using three different cross-linkers. The dynamic mechanical and morphological properties of three different thermosets were investigated via DMA, SAXS, and WAXS techniques. The three different thermosets exhibit similar molecular morphology but different storage modulus and glass transition temperature. In this work, it was shown that despite lignin’s heterogeneity it was possible to produce thermosetting materials with tunable properties.

    Download full text (pdf)
    Exploring the effects of different cross-linkers on lignin-based thermoset properties and morphologies
    Download full text (pdf)
    SI
  • 3.
    Ribca, Iuliana
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Sochor, Benedikt
    Deutsches-Elektronen Synchrotron (DESY).
    Betker, Marie
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fiberprocesser. Deutsches-Elektronen Synchrotron (DESY).
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. Deutsches-Elektronen Synchrotron (DESY).
    Lawoko, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Sevastyanova, Olena
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Meier, Michael A.R.
    Institute of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum MZE, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany;Institute of Biological and Chemical Systems─Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
    Johansson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Impact of lignin source on the performance of thermoset resins2023In: European Polymer Journal, ISSN 0014-3057, E-ISSN 1873-1945, Vol. 194, p. 112141-112141, article id 112141Article in journal (Refereed)
    Abstract [en]

    A series of different technical hardwood lignin-based resins have been successfully synthesized, characterized, and utilised to produce thiol-ene thermoset polymers. Firstly, technical lignin was fractionated and allylated, whereafter it was crosslinked with a trifunctional thiol. Structural and morphological characteristics of the lignin fractions were studied by 1H NMR, 31P NMR, SEC, FTIR, DSC, TGA, and WAXS. The hardwood lignin fractions have a high content of C5-substituted OH groups. The WAXS studies on lignin fractions revealed the presence of two π-π stacking conformations, sandwiched (4.08–4.25 Å) and T-shaped (6.52–6.91 Å). The presence of lignin superstructures with distances/sizes between 10.5 and 12.8 Å was also identified. The curing reaction of the thermosets was investigated by RT-FTIR. Almost all thermosets (excepting one fraction) reached 95% of the thiol conversion in less than 17 h, revealing the enhanced reactivity of the allylated hardwood lignin samples.

    The mechanical properties of the thermosets were investigated by DMA. The curing performance, as well as the final thermoset properties, have been correlated to variations in chemical composition and morphological differences of lignin fractions. The described results clearly demonstrate that technical hardwood lignins can be utilized for these applications, but also that significant differences compared to softwood lignins have to be considered for material design.

    Download (pdf)
    Impact of lignin source on the performance of thermoset resins
  • 4.
    Ribca, Iuliana
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Sochor, Benedikt
    Deutsches-Elektronen Synchrotron (DESY),.
    Roth, Stephan V.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.
    Lawoko, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Meier, Michael A. R.
    Institute of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum MZE, Karlsruhe Institute of Technology (KIT).
    Johansson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Effect of Molecular Organization on the Properties of Fractionated Lignin-Based Thiol-Ene Thermoset MaterialsManuscript (preprint) (Other academic)
    Abstract [en]

    In this study, the combination of sequential solvent fractionation of technical Kraft lignin were followed by allylation of most OH functionalities to give highly functional thermoset resins. All lignin fractions were highly functionalized on the phenolic (≥95%) and carboxylic acid OH (≥85%), and to a significant extent on the aliphatic OH moieties (between 43 and 75%). The resins were subsequently cross-linked using thiol-ene chemistry. The high amount of allyl functionalities resulted in a high cross-link density. DMA measurements showed that thioether content dominates the performance of these thermosets with a glass transition temperature (Tg) between 73 and 99 °C and with a storage modulus between 1.9 and 3.8 GPa for all thermosets. The lignin fractions and lignin-based thermosets morphology, at nanoscale, was studied by wide angle X-ray scattering measurements (WAXS). Two π-π stacking interactions were observed: sandwich (≈4.1–4.7 Å) and T-shaped (≈5.5–7.2 Å). The introduction of allyl functionalities weakens the T-shaped π-π stacking interactions. A new signal corresponding to a distance of ≈3.5 Å was observed in lignin-based thermosets, which was attributed to a thioether organized structure. At the same time, a lignin superstructure, was observed with a distance/size corresponding to 7.9-17.5 Å in all samples.

  • 5.
    Truncali, Alessio
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Ribca, Iuliana
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Yao, Jenevieve G.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.
    Johansson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Microwave-assisted fractionation and functionalization of technical lignin toward thermoset resins2023In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 140, no 45, article id e54645Article in journal (Refereed)
    Abstract [en]

    Lignin is the most abundant aromatic biopolymer, with a potential to serve as a building block of rigid and thermally stable bio-based materials. However, it is still underutilized because of the heterogeneous and not fully understood chemical structure. Here, technical softwood Kraft lignin is refined in to narrow-dispersity and relatively low molar mass fractions by microwave-assisted processing, followed by microwave-assisted allylation and further application in lignin-based thermosets. This microwave processing is carried out under non-catalyzed conditions using a low boiling point solvent and elevated pressure. The properties of the retrieved fractions are investigated by 31P-NMR, heteronuclear single quantum coherence spectroscopy-NMR, SEC, differential scanning calorimetry, and thermogravimetric analysis. The extraction yield of the selected lignin fraction is around 25%, with the number-average molar mass (Mn), weight-average molar mass (Mw), and dispersity (Đ) significantly reduced. The chemically modified lignin is characterized by 31P NMR and FTIR, which provides evidence of the introduction of the allyl moieties. The analyses demonstrate that 90 ± 3% of the hydroxyl groups in fractionated lignin are successfully allylated. Subsequently, the allylated lignin is cross-linked through thermally induced thiol-ene chemistry to produce lignin-based thermosets. The final thermosets exhibit a storage modulus of 4050 ± 60 MPa and a Tg of 105 ± 5°C.

  • 6.
    Truncali, Alessio
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Ribca, Iuliana
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Yao, Jenevieve G.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.
    Johansson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Microwave-Assisted Fractionation and Functionalization of Technical Lignin Towards Thermoset ResinsManuscript (preprint) (Other academic)
    Abstract [en]

    Lignin is the main source of aromatic natural polymers, with a potential to serve as a building block of rigid and thermally stable bio-based materials. However, because of its heterogeneity differences and not fully understood chemical structure it is still underutilized. Therefore, in this paper, technical softwood Kraft lignin is refined in to narrow-dispersity and relatively low molecular weight fractions by microwave-assisted processing. This process was carried out under non-catalytic conditions using a low boiling point solvent and higher pressure. The chemical properties of the retrieved fractions were investigated by 31P NMR, HSQC NMR, SEC, DSC, and TGA. One of the retrieved soluble lignin fractions was successfully chemically modified by microwave processing. The chemically modified lignin was characterized by 31P NMR and FTIR, which provided evidence of the introduction of the allyl moieties. Subsequently, the allylated lignin was cross-linked through thermally induced thiol-ene chemistry to produce lignin-based thermosets.

  • 7.
    Wolfs, Jonas
    et al.
    Institute of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum MZE, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany, Straße am Forum 7.
    Ribca, Iuliana
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Meier, Michael A.R.
    Institute of Organic Chemistry (IOC), Materialwissenschaftliches Zentrum MZE, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany, Straße am Forum 7; Institute of Biological and Chemical Systems − Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Hermann-von-Helmholtz-Platz 1.
    Johansson, Mats
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Polythionourethane Thermoset Synthesis via Activation of Elemental Sulfur in an Efficient Multicomponent Reaction Approach2023In: ACS Sustainable Chemistry and Engineering, E-ISSN 2168-0485, Vol. 11, no 9, p. 3952-3962Article in journal (Refereed)
    Abstract [en]

    For the transition toward a safer and more sustainable production of polymeric materials, new synthetic concepts need to be developed. Herein, we describe a catalytic, solvent-free synthesis approach for novel thionourethane thermoset materials, in which the diisothiocyanate reactant is generated in situ via a sulfurization of isocyanides with elemental sulfur, preventing the exposure and handling of the diisothiocyanate. In this one-pot procedure, castor oil fulfills a dual role: (i) acting as the solvent for the in situ diisothiocyanate synthesis in the first step and (ii) reacting as the polyol component in the subsequent thionourethane thermoset formation. The kinetics of the consecutive two steps were studied in detail via real-time IR measurements, and the thermoset crosslinking step was found to be thermally triggerable after the diisothiocyanate reactant is quantitatively formed, enabling high control over the curing process of the system. Differential scanning calorimetry, thermogravimetric analysis, and rheological measurements were performed to investigate the thermal and mechanical properties of the novel thionourethane thermosets and then compared to analogous polyurethane materials. Our results demonstrate an unprecedented approach for thermoset synthesis via an in situ reagent synthesis, i.e., the generation of isothiocyanates from isocyanides by catalytic activation of elemental sulfur, and subsequent thermally triggerable thermosetting with a polyol, resulting in materials with appealing properties.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf