kth.sePublications
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Brooke, Robert
    et al.
    Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden.
    Lay, Makara
    Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden;INM- Leibniz Institute for New Materials, Saarbrücken, Germany.
    Jain, Karishma
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Francon, Hugo
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Say, Mehmet Girayhan
    Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden.
    Belaineh, Dagmawi
    Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden.
    Wang, Xin
    Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden.
    Håkansson, Karl M. O.
    Bioeconomy & Health, RISE Research Institutes of Sweden, Stockholm, Sweden.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Engquist, Isak
    Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden;Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden.
    Edberg, Jesper
    Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden.
    Berggren, Magnus
    Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden;Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden.
    Nanocellulose and PEDOT:PSS composites and their applications2022In: Polymer Reviews, ISSN 1558-3724, p. 1-41Article in journal (Refereed)
    Abstract [en]

    The need for achieving sustainable technologies has encouraged research on renewable and biodegradable materials for novel products that are clean, green, and environmentally friendly. Nanocellulose (NC) has many attractive properties such as high mechanical strength and flexibility, large specific surface area, in addition to possessing good wet stability and resistance to tough chemical environments. NC has also been shown to easily integrate with other materials to form composites. By combining it with conductive and electroactive materials, many of the advantageous properties of NC can be transferred to the resulting composites. Conductive polymers, in particular poly(3,4-ethylenedioxythiophene:poly(styrene sulfonate) (PEDOT:PSS), have been successfully combined with cellulose derivatives where suspensions of NC particles and colloids of PEDOT:PSS are made to interact at a molecular level. Alternatively, different polymerization techniques have been used to coat the cellulose fibrils. When processed in liquid form, the resulting mixture can be used as a conductive ink. This review outlines the preparation of NC/PEDOT:PSS composites and their fabrication in the form of electronic nanopapers, filaments, and conductive aerogels. We also discuss the molecular interaction between NC and PEDOT:PSS and the factors that affect the bonding properties. Finally, we address their potential applications in energy storage and harvesting, sensors, actuators, and bioelectronics. 

  • 2.
    Isacsson, Patrik
    et al.
    Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden;Ahlstrom-Munksjö Research Center, 38140 Apprieu, France.
    Jain, Karishma
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Fall, Andreas
    RISE Research Institutes of Sweden, Bioeconomy and Health, Drottning Kristinas väg 61, SE-114 86 Stockholm, Sweden.
    Chauve, Valerie
    Ahlstrom-Munksjö Research Center, 38140 Apprieu, France.
    Hajian, Alireza
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Granberg, Hjalmar
    RISE Research Institutes of Sweden, Bioeconomy and Health, Drottning Kristinas väg 61, SE-114 86 Stockholm, Sweden.
    Boiron, Lucie
    Ahlstrom-Munksjö Research Center, 38140 Apprieu, France.
    Berggren, Magnus
    Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden;Wallenberg Wood Science Center, Linköping University, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
    Håkansson, Karl
    RISE Research Institutes of Sweden, Bioeconomy and Health, Drottning Kristinas väg 61, SE-114 86 Stockholm, Sweden.
    Edberg, Jesper
    RISE Research Institutes of Sweden, Digital Systems, Bio- and Organic Electronics, Bredgatan 35, Norrköping SE-602 21, Sweden.
    Engquist, Isak
    Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden;Wallenberg Wood Science Center, Linköping University, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    Production of energy-storage paper electrodes using a pilot-scale paper machine2022In: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 10, no 40, p. 21579-21589Article in journal (Refereed)
  • 3.
    Jain, Karishma
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    3D printable composites of modified cellulose fibers and conductive polymers and their use in wearable electronicsManuscript (preprint) (Other academic)
  • 4.
    Jain, Karishma
    KTH, Superseded Departments (pre-2005), Fibre and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Design of Cellulose-Based Electrically Conductive Composites: Fundamentals, Modifications, and Scale-up2022Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Modern demand for consumer electronics is fueling the generation of 'E-waste.' Furthermore, theraw materials and manufacturing methods used in the fabrication of electronics are not sustainable.There is therefore the need to develop renewable and sustainable raw materials for electronicdevices that do not sacrifice performance; as well as a requirement to develop novel, scalable,sustainable electronic device fabrication methods that use these green electronic materials. To thisend, bio-based materials are an environment-friendly alternative to non-renewable materials; andprinted electronics could replace traditional manufacturing methods. Cellulose, one of the mostabundant biopolymers on Earth, exhibits an interesting hierarchical structure. Due to extensiveresearch over the years, there are a wide variety of established chemical modifications for cellulose,which can be harnessed to prepare high-performance electronic components. The hierarchicalstructure of cellulose is crucial in defining its material properties. In cellulose rich fibers, highmolecular mass glucan polymers are commonly found in the form of cellulose nanofibrils (CNFs);these can be liberated and, once so, are capable of self-assembling into a wide variety of structures.Since cellulose is electrically insulating, it needs to be made into composites with conductivematerials to form electrically conductive materials.This thesis investigates the interaction between cellulose and the conductive polymer PEDOT:PSS(poly(3,4-ethylenedioxythiophene) : polystyrene sulfonate), and demonstrates how a fundamentalunderstanding of the interactions between the two can be used to guide the chemical modificationof cellulose for the large scale production of sustainable electronics. First, the PEDOT:PSS structurewas studied using molecular dynamics (MD) simulations and experimental methods. Secondly, theinteraction between cellulose and PEDOT:PSS was studied, and factors affecting this interactionwere identified. This knowledge was then applied to propose a molecular interaction mechanismbetween these materials. Nanocellulose, especially cellulose nanofibrils (CNFs), have been integralto the development of bio-based conductive composites. However, the nanofibrillation process isexpensive and energy-intensive. In addition, PEDOT:PSS is an expensive polymer. Therefore, inthis work, chemically modified fibers were used to improve the interaction between cellulose andPEDOT:PSS; and prepare fiber-based bioelectronics and energy storage devices. The large-scaleproduction of papers capable of energy storage has also been demonstrated using chemicallymodifiedfibers, the factors affecting the processing of these materials have been identifiedthroughout.

    Download full text (pdf)
    Kappa
  • 5.
    Jain, Karishma
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    The effect of chemically modifed cellulose fibers on the structure and properties of composites with PEDOT:PSSManuscript (preprint) (Other academic)
  • 6.
    Jain, Karishma
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Mehandzhiyski, Aleksandar Y.
    Zozoulenko, Igor
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    PEDOT:PSS nano-particles in aqueous media: A comparative experimental and molecular dynamics study of particle size, morphology and z-potential2021In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 584, p. 57-66Article in journal (Refereed)
    Abstract [en]

    PEDOT:PSS is the most widely used conducting polymer in organic and printed electronics. PEDOT:PSS films have been extensively studied to understand the morphology, ionic and electronic conductivity of the polymer. However, the polymer dispersion, which is used to cast or spin coat the films, is not well characterized and not well understood theoretically. Here, we study in detail the particle morphology, size, charge density and zeta potential (z-potential) by coarse-grained MD simulations and dynamic light scattering (DLS) measurements, for different pH levels and ionic strengths. The PEDOT:PSS particles were found to be 12 nm–19 nm in diameter and had a z-potential of −30 mV to −50 mV when pH was changed from 1.7 to 9, at an added NaCl concentration of 1 mM, as measured by DLS. These values changed significantly with changing pH and ionic strength of the solution. The charge density of PEDOT:PSS particles was also found to be dependent on pH and ionic strength. Besides, the distribution of different ions (PSS−, PEDOT+, Na+, Cl−) present in the solution is simulated to understand the particle morphology and molecular origin of z-potential in PEDOT:PSS dispersion. The trend in change of particle size, charge density and z- potential with changing pH and ionic strength are in good agreement between the simulations and experiments. Our results show that the molecular model developed in this work represents very well the PEDOT:PSS nano-particles in aqueous dispersion. With this study, we hope to provide new insight and an in-depth understanding of the morphology and z-potential evolution in PEDOT:PSS dispersion.

  • 7.
    Jain, Karishma
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Reid, Michael S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Larsson, Per A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    On the interaction between PEDOT:PSS and cellulose: Adsorption mechanisms and controlling factors2021In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 260, article id 117818Article in journal (Refereed)
    Abstract [en]

    Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a conducting polymer frequently used with cellulose, to develop advanced electronic materials. To understand the fundamental interactions between cellulose and PEDOT:PSS, a quartz crystal microbalance with dissipation (QCM-D) was used to study the adsorption of PEDOT:PSS onto model films of cellulose-nanofibrils (CNFs) and regenerated cellulose. The results show that PEDOT:PSS adsorbs spontaneously onto anionically charged cellulose wherein the adsorbed amount can be tuned by altering solution parameters such as pH, ionic strength and counterion to the charges on the CNF. Temperature-dependent QCM-D studies indicate that an entropy gain is the driving force for adsorption, as the adsorbed amount of PEDOT:PSS increased with increasing temperature. Colloidal probe AFM, in accordance with QCM-D results, also showed an increased adhesion between cellulose and PEDOT:PSS at low pH. AFM images show bead-like PEDOT:PSS particles on CNF surfaces, while no such organization was observed on the regenerated cellulose surfaces. This work provides insight into the interaction of PEDOT:PSS/cellulose that will aid in the design of sustainable electronic devices.

  • 8.
    Jain, Karishma
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wang, Zhen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Garma, Leonardo D.
    Karolinska Inst, Med Biochem & Biophys, Stockholm, Sweden..
    Engel, Emile
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Ciftci, Göksu Cinar
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Fager, Cecilia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Larsson, Per A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
    3D printable composites of modified cellulose fibers and conductive polymers and their use in wearable electronics2023In: APPLIED MATERIALS TODAY, ISSN 2352-9407, Vol. 30, article id 101703Article in journal (Refereed)
    Abstract [en]

    There are many bioelectronic applications where the additive manufacturing of conductive polymers may be of use. This method is cheap, versatile and allows fine control over the design of wearable electronic devices. Nanocellulose has been widely used as a rheology modifier in bio-based inks that are used to print electrical components and devices. However, the preparation of nanocellulose is energy and time consuming. In this work an easy-to-prepare, 3D-printable, conductive bio-ink; based on modified cellulose fibers and poly(3,4-ethylene dioxythiophene) poly(styrene sulfonate) (PEDOT:PSS), is presented. The ink shows excellent printability, the printed samples are wet stable and show excellent electrical and electrochemical performance. The printed structures have a conductivity of 30 S/cm, high tensile strains (>40%), and specific capacitances of 211 F/g; even though the PEDOT:PSS only accounts for 40 wt% of the total ink composition. Scanning electron microscopy (SEM), wide-angle X-ray scattering (WAXS), and Raman spectroscopy data show that the modified cellulose fibers induce conformational changes and phase separation in PEDOT:PSS. It is also demonstrated that wearable supercapacitors and biopotential-monitoring devices can be prepared using this ink.

  • 9.
    Kotov, Nikolay
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
    Larsson, Per A.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Jain, Karishma
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.
    Abitbol, Tiffany
    RISE Res Inst Sweden, Drottning Kristinas Vag 55, SE-11428 Stockholm, Sweden..
    Cernescu, Adrian
    Attocube Syst AG, Neaspec, Eglfinger Weg 2, D-85540 Haar, Germany..
    Wågberg, Lars
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
    Johnson, C. Magnus
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
    Elucidating the fine-scale structural morphology of nanocellulose by nano infrared spectroscopy2023In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 302, article id 120320Article in journal (Refereed)
    Abstract [en]

    Nanoscale infrared (IR) spectroscopy and microscopy, enabling the acquisition of IR spectra and images with a lateral resolution of 20 nm, is employed to chemically characterize individual cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) to elucidate if the CNCs and CNFs consist of alternating crystalline and amorphous domains along the CNF/CNC. The high lateral resolution enables studies of the nanoscale morphology at different domains of the CNFs/CNCs: flat segments, kinks, twisted areas, and end points. The types of nano-cellulose investigated are CNFs from tunicate, CNCs from cotton, and anionic and cationic wood-derived CNFs. All nano-FTIR spectra acquired from the different samples and different domains of the individual nanocellulose particles resemble a spectrum of crystalline cellulose, suggesting that the non-crystalline cellulose signal observed in macroscopic measurements of nanocellulose most likely originate from cellulose chains present at the surface of the nanocellulose particles.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf