kth.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 7 av 7
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Görür, Yunus Can
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Francon, Hugo
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Sethi, Jatin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Maddalena, L.
    Montanari, Celine
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Erlandsson, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Carosio, F.
    Larsson, Per A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Rapidly Prepared Nanocellulose Hybrids as Gas Barrier, Flame Retardant, and Energy Storage Materials2022Ingår i: ACS Applied Nano Materials, E-ISSN 2574-0970, Vol. 5, nr 7, s. 9188-9200Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cellulose nanofibril (CNF) hybrid materials show great promise as sustainable alternatives to oil-based plastics owing to their abundance and renewability. Nonetheless, despite the enormous success achieved in preparing CNF hybrids at the laboratory scale, feasible implementation of these materials remains a major challenge due to the time-consuming and energy-intensive extraction and processing of CNFs. Here, we describe a scalable materials processing platform for rapid preparation (<10 min) of homogeneously distributed functional CNF-gibbsite and CNF-graphite hybrids through a pH-responsive self-assembly mechanism, followed by their application in gas barrier, flame retardancy, and energy storage materials. Incorporation of 5 wt % gibbsite results in strong, transparent, and oxygen barrier CNF-gibbsite hybrid films in 9 min. Increasing the gibbsite content to 20 wt % affords them self-extinguishing properties, while further lowering their dewatering time to 5 min. The strategy described herein also allows for the preparation of freestanding CNF-graphite hybrids (90 wt % graphite) that match the energy storage performance (330 mA h/g at low cycling rates) and processing speed (3 min dewatering) of commercial graphite anodes. Furthermore, these ecofriendly electrodes can be fully recycled, reformed, and reused while maintaining their initial performance. Overall, this versatile concept combines a green outlook with high processing speed and material performance, paving the way toward scalable processing of advanced ecofriendly hybrid materials. 

  • 2.
    Görür, Yunus Can
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Francon, Hugo
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Sethi, Jatin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Maddalena, Lorenza
    Montanari, Celine
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Erlandsson, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Carosio, Federico
    Politecn Torino, Dipartimento Sci Applicata & Tecnol, Alessandria Campus,Viale Teresa Michel 5, I-15121 Alessandria, Italy..
    Larsson, Per A.
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Rapid Processing of Functional Hybrids via Reversible Self-Assembly of NanocellulosesManuskript (preprint) (Övrigt vetenskapligt)
  • 3.
    Görür, Yunus Can
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Francon, Hugo
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Sethi, Jatin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Maddalena, Lorenza
    Montanari, Celine
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Biokompositer. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Erlandsson, Johan
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Carosio, Federico
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Larsson, Per A.
    KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellens Centrum BiMaC Innovation. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för teknikvetenskap (SCI), Centra, Linné Flow Center, FLOW. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Rapid processing of functional nanocellulose hybrids for gas barrier, flame retardant and energy storage materialsManuskript (preprint) (Övrigt vetenskapligt)
  • 4.
    Sethi, Jatin
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Afrin, S.
    Karim, Z.
    Smart polymer coatings for protection from corrosion2020Ingår i: Smart Polymer Nanocomposites: Biomedical and Environmental Applications, Elsevier BV , 2020, s. 399-413Kapitel i bok, del av antologi (Övrigt vetenskapligt)
    Abstract [en]

    In this chapter, various novel and well-noted approaches for corrosion preventive coatings have been discussed. Very well-documented factors that affect the corrosion mechanism are environmental factors, metal, and surface conditions and are elaborated in detail. Various modern, highly approachable, and currently used coating approaches are expanded and explained. This chapter provides a full view of the modern techniques used for corrosion prevention and cure. 

  • 5.
    Sethi, Jatin
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Glowacki, Eric
    Linköping University, Campus Norrköping, Laboratory of Organic Electronics, SE-602 21 Norrköping, Sweden; Central European Institute of Technology, Brno University of Technology, CZ-601 77 Brno, Czech Republic.
    Reid, Michael S.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. RISE Research Institutes of Sweden, Material and Surface Design, SE-114 86, Stockholm, Sweden.
    Larsson, Per A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Ultra-thin parylene-aluminium hybrid coatings on nanocellulose films to resist water sensitivity2024Ingår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 323, s. 121365-, artikel-id 121365Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Non-sustainable single-use plastics used for food packaging needs to be phased out. Films made from cellulose nanofibrils (CNFs) are suitable candidates for biodegradable and recyclable packaging materials as they exhibit good mechanical properties, excellent oxygen barrier properties and high transparency. Yet, their poor water vapour barrier properties have been a major hindrance in their commercialisation. Here, we describe the preparation of 25 μm thick CNF films with significantly improved water vapour barrier properties after deposition of ultrathin polymeric and metallic coatings, parylene C and aluminium, respectively. When first adding a 40 nm aluminium layer followed by an 80 nm parylene layer, i.e. with a combined thickness of less than one percent of the CNF film, a water vapour transmission rate of 2.8 g m−2 d−1 was achieved at 38 °C and 90 % RH, surpassing a 25 μm polypropylene film (4–12 g m−2 d−1). This is an improvement of more than 700 times compared to uncoated CNF films, under some of the harshest possible conditions a packaging material will need to endure in commercial use. The layers showed a good and even coverage, as assessed by atomic force microscopy, and the parylene-coated surfaces were hydrophobic with a contact angle of 110°, providing good water repellency.

  • 6.
    Sethi, Jatin
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. Univ Oulu, Fibre & Particle Engn Res Unit, Oulu 90014, Finland..
    Liimatainen, Henrikki
    Univ Oulu, Fibre & Particle Engn Res Unit, Oulu 90014, Finland..
    Sirvio, Juho Antti
    Univ Oulu, Fibre & Particle Engn Res Unit, Oulu 90014, Finland..
    Fast and Filtration-Free Method to Prepare Lactic Acid-Modified Cellulose Nanopaper2021Ingår i: ACS Omega, E-ISSN 2470-1343, Vol. 6, nr 29, s. 19038-19044Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Dewatering in the preparation of cellulose nano-papers can take up to a few hours, which is a notable bottleneck in the commercialization of nanopapers. As a solution, we report a filtration-free method that is capable of preparing lactic acid-modified cellulose nanopapers within a few minutes. The bleached cellulose nanofibers (CNFs), obtained using a Masuko grinder, were functionalized by sonication-assisted lactic acid modification and centrifuged at 14 000 rpm to achieve a doughlike, concentrated mass. The concentrated CNFs were rolled into a wet sheet and dried in a vacuum drier to obtain nanopapers. The nanopaper preparation time was 10 min, which is significantly faster than the earlier time period reported in the literature (up to a few hours of preparation time). The mechanical properties of nanopaper were comparable to the previous values reported for nanopapers. In addition, the method was successfully used to prepare highly conductive functional nanopapers containing carboxylated multiwalled carbon nanotubes.

  • 7.
    Sethi, Jatin
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Wågberg, Lars
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Larsson, Per A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Fiberteknologi.
    Water-resistant hybrid cellulose nanofibril films prepared by charge reversal on gibbsite nanoclays2022Ingår i: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 295, artikel-id 119867Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A novel method is reported for the preparation of a hybrid gibbsite-cellulose nanofibril (CNF) nanocomposite film with improved wet and dry mechanical properties and barrier properties. A gibbsite and cationic CNF dispersion was dewatered at pH 7 to prepare well-ordered films. Thereafter, the charge on gibbsite was reversed by dipping the film in pH 12 water to induce an ionic interaction between CNFs and gibbsite, enhancing the film properties; modulus improved from 9 GPa to 12 GPa, with a maintained strain-at-break of 6 % and tensile strength of 190 MPa. Additionally, the charge-reversed film swelled a factor of 24 less than a film without any gibbsite. At 23 °C and 80 % RH, the oxygen barrier properties were improved by a factor of 28, to a value of 18 ml·μm·m−2·kPa−1·24 h−1 and the water vapour barrier properties were improved by a factor of 12, to a value of 105 g·μm·m−2·kPa−1·24 h−1. 

1 - 7 av 7
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf