Ändra sökning
Avgränsa sökresultatet
1 - 9 av 9
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abbaszadeh Shahri, Abbas
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap. Islamic Azad University.
    An Optimized Artificial Neural Network Structure to Predict Clay Sensitivity in a High Landslide Prone Area Using Piezocone Penetration Test (CPTu) Data: A Case Study in Southwest of Sweden2016Ingår i: Geotechnical and Geological Engineering, ISSN 0960-3182, E-ISSN 1573-1529, s. 1-14Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Application of artificial neural networks (ANN) in various aspects of geotechnical engineering problems such as site characterization due to have difficulty to solve or interrupt through conventional approaches has demonstrated some degree of success. In the current paper a developed and optimized five layer feed-forward back-propagation neural network with 4-4-4-3-1 topology, network error of 0.00201 and R2 = 0.941 under the conjugate gradient descent ANN training algorithm was introduce to predict the clay sensitivity parameter in a specified area in southwest of Sweden. The close relation of this parameter to occurred landslides in Sweden was the main reason why this study is focused on. For this purpose, the information of 70 piezocone penetration test (CPTu) points was used to model the variations of clay sensitivity and the influences of direct or indirect related parameters to CPTu has been taken into account and discussed in detail. Applied operation process to find the optimized ANN model using various training algorithms as well as different activation functions was the main advantage of this paper. The performance and feasibility of proposed optimized model has been examined and evaluated using various statistical and analytical criteria as well as regression analyses and then compared to in situ field tests and laboratory investigation results. The sensitivity analysis of this study showed that the depth and pore pressure are the two most and cone tip resistance is the least effective factor on prediction of clay sensitivity.

  • 2.
    Abbaszadeh Shahri, Abbas
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik. College of Civil Engineering, Roudehen branch, Islamic Azad University, Tehran, Iran.
    Larsson, Stefan
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    Johansson, Fredrik
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    CPT-SPT correlations using artificial neural network approach: A Case Study in Sweden2015Ingår i: The Electronic journal of geotechnical engineering, ISSN 1089-3032, E-ISSN 1089-3032, Vol. 20, nr 28, s. 13439-13460Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The correlation between Standard and Cone Penetration Tests (SPT and CPT) as two of the most used in-situ geotechnical tests is of practical interest in engineering designs. In this paper, new SPT-CPT correlations for southwest of Sweden are proposed and developed using an artificial neural networks (ANNs) approach. The influences of soil type, depth, cone tip resistance, sleeve friction, friction ratio and porewater pressure on obtained correlations has been taken into account in optimized ANN models to represent more comprehensive and accurate correlation functions. Moreover, the effect of particle mean grain size and fine content were investigated and discussed using graph analyses. The validation of ANN based correlations were tested using several statistical criteria and then compared to existing correlations in literature to quantify the uncertainty of the correlations. Using the sensitivity analyses, the most and least effective factors on CPT-SPT predictions were recognized and discussed. The results indicate the ability of ANN as an attractive alternative method regarding to conventional statistical analyses to develop CPT-SPT relations.

  • 3.
    Abbaszadeh Shahri, Abbas
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap.
    Larsson, Stefan
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    Johansson, Fredrik
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    Updated relations for the uniaxial compressive strength of marlstones based on P-wave velocity and point load index test2016Ingår i: INNOVATIVE INFRASTRUCTURE SOLUTIONS, ISSN 2364-4176, Vol. 1, nr 1, artikel-id UNSP 17Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Although there are many proposed relations for different rock types to predict the uniaxial compressive strength (UCS) as a function of P-wave velocity (V-P) and point load index (Is), only a few of them are focused on marlstones. However, these studies have limitations in applicability since they are mainly based on local studies. In this paper, an attempt is therefore made to present updated relations for two previous proposed correlations for marlstones in Iran. The modification process is executed through multivariate regression analysis techniques using a provided comprehensive database for marlstones in Iran, including UCS, V-P and Is from publications and validated relevant sources comprising 119 datasets. The accuracy, appropriateness and applicability of the obtained modifications were tested by means of different statistical criteria and graph analyses. The conducted comparison between updated and previous proposed relations highlighted better applicability in the prediction of UCS using the updated correlations introduced in this study. However, the derived updated predictive models are dependent on rock types and test conditions, as they are in this study.

  • 4.
    Abbaszadeh Shahri, Abbas
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap.
    Naderi, Shima
    Modified correlations to predict the shear wave velocity using piezocone penetration test data and geotechnical parameters: a case study in the southwest of Sweden2016Ingår i: INNOVATIVE INFRASTRUCTURE SOLUTIONS, ISSN 2364-4176, Vol. 1, nr 1, artikel-id UNSP 13Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Shear wave velocity (VS) is an important geotechnical characteristic for determining dynamic soil properties. When no direct measurements are available, V-S can be estimated based on correlations with common in situ tests, such as the piezocone penetration test (CPTu). In the current paper, three modified equations to predict the V-S of soft clays based on a comprehensive provided CPTu database and related geotechnical parameters for southwest of Sweden were presented. The performance of the obtained relations were examined and investigated by several statistical criteria as well as graph analyses. The best performance was observed by implementing of corrected cone tip resistance (q(t)) and pore pressure ratio (B-q) which directly can be found from CPTu data. The introduced modifications were developed and validated for available soft clays of the studied area in southwest of Sweden, and thus, their applicability for proper prediction in other areas with different characteristics should be controlled. However, the used method as a suitable tool can be employed to investigate.

  • 5.
    Abbaszadeh Shahri, Abbas
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    Spross, Johan
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    Johansson, Fredrik
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    Larsson, Stefan
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    Kartering av skredbenägenhet medartificiell intelligens2018Ingår i: Bygg & teknik, ISSN 0281-658X, nr 1Artikel i tidskrift (Övrigt vetenskapligt)
  • 6.
    Abbaszadeh Shahri, Abbas
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    Spross, Johan
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    Johansson, Fredrik
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    Larsson, Stefan
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    Storskalig kartering av skredbenägenhet i västra Götaland med artificiell intelligens2018Konferensbidrag (Övrigt vetenskapligt)
  • 7. Esmaeilabadi, Reza
    et al.
    Shahri, Abbas Abbaszadeh
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik. Islamic Azad Univ.
    PREDICTION OF SITE RESPONSE SPECTRUM UNDER EARTHQUAKE VIBRATION USING AN OPTIMIZED DEVELOPED ARTIFICIAL NEURAL NETWORK MODEL2016Ingår i: ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, ISSN 2299-8624, Vol. 10, nr 30, s. 76-83Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Site response spectrum is one of the key factors to determine the maximum acceleration and displacement, as well as structure behavior analysis during earthquake vibrations. The main objective of this paper is to develop an optimized model based on artificial neural network (ANN) using five different training algorithms to predict nonlinear site response spectrum subjected to Silakhor earthquake vibrations is. The model output was tested for a specified area in west of Iran. The performance and quality of optimized model under all training algorithms have been examined by various statistical, analytical and graph analyses criteria as well as a comparison with numerical methods. The observed adaptabilities in results indicate a feasible and satisfactory engineering alternative method for predicting the analysis of nonlinear site response.

  • 8.
    Ghaderi, Abdolvahed
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    Abbaszadeh Shahri, Abbas
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik. Islamic Azad Univ, Roudehen Branch, Fac Civil Engn, Tehran, Iran..
    Larsson, Stefan
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik.
    An artificial neural network based model to predict spatial soil type distribution using piezocone penetration test data (CPTu)2019Ingår i: Bulletin of Engineering Geology and the Environment, ISSN 1435-9529, E-ISSN 1435-9537, Vol. 78, nr 6, s. 4579-4588Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Soil types mapping and the spatial variation of soil classes are essential concerns in both geotechnical and geoenvironmental engineering. Because conventional soil mapping systems are time-consuming and costly, alternative quick and cheap but accurate methods need to be developed. In this paper, a new optimized multi-output generalized feed forward neural network (GFNN) structure using 58 piezocone penetration test points (CPTu) for producing a digital soil types map in the southwest of Sweden is developed. The introduced GFNN architecture is supported by a generalized shunting neuron (GSN) model computing unit to increase the capability of nonlinear boundaries of classified patterns. The comparison conducted between known soil type classification charts, CPTu interpreting procedures, and the outcomes of the GFNN model indicates acceptable accuracy in estimating complex soil types. The results show that the predictability of the GFNN system offers a valuable tool for the purpose of soil type pattern classifications and providing soil profiles.

  • 9.
    Shahri, Abbas Abbaszadeh
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Jord- och bergmekanik. Islamic Azad Univ.
    Assessment and Prediction of Liquefaction Potential Using Different Artificial Neural Network Models: A Case Study2016Ingår i: Geotechnical and Geological Engineering, ISSN 0960-3182, E-ISSN 1573-1529, Vol. 34, nr 3, s. 807-815Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Soil liquefaction as a transformation of granular material from solid to liquid state is a type of ground failure commonly associated with moderate to large earthquakes and refers to the loss of strength in saturated, cohesionless soils due to the build-up of pore water pressures and reduction of the effective stress during dynamic loading. In this paper, assessment and prediction of liquefaction potential of soils subjected to earthquake using two different artificial neural network models based on mechanical and geotechnical related parameters (model A) and earthquake related parameters (model B) have been proposed. In model A the depth, unit weight, SPT-N value, shear wave velocity, soil type and fine contents and in model B the depth, stress reduction factor, cyclic stress ratio, cyclic resistance ratio, pore pressure, total and effective vertical stress were considered as network inputs. Among the numerous tested models, the 6-4-4-2-1 structure correspond to model A and 7-5-4-6-1 for model B due to minimum network root mean square errors were selected as optimized network architecture models in this study. The performance of the network models were controlled approved and evaluated using several statistical criteria, regression analysis as well as detailed comparison with known accepted procedures. The results represented that the model A satisfied almost all the employed criteria and showed better performance than model B. The sensitivity analysis in this study showed that depth, shear wave velocity and SPT-N value for model A and cyclic resistance ratio, cyclic stress ratio and effective vertical stress for model B are the three most effective parameters on liquefaction potential analysis. Moreover, the calculated absolute error for model A represented better performance than model B. The reasonable agreement of network output in comparison with the results from previously accepted methods indicate satisfactory network performance for prediction of liquefaction potential analysis.

1 - 9 av 9
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf