Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Baev, Alexander
    et al.
    KTH, Superseded Departments, Biotechnology.
    Gel'mukhanov, Faris
    KTH, Superseded Departments, Biotechnology.
    Rubio-Pons, Oscar
    KTH, Superseded Departments, Biotechnology.
    Cronstrand, Peter
    KTH, Superseded Departments, Biotechnology.
    Ågren, Hans
    KTH, Superseded Departments, Biotechnology.
    Upconverted lasing based on many-photon absorption: an all dynamic description2004In: Journal of the Optical Society of America. B, Optical physics, ISSN 0740-3224, E-ISSN 1520-8540, Vol. 21, no 2, p. 384-396Article in journal (Refereed)
    Abstract [en]

    A theory is developed for the propagation through a nonlinear medium of strong pump and amplifiedspontaneous-emission pulses. The theory is based on a solution of the density matrix equations that aims at providing an adequate treatment of the nonlinear polarization of the material without addressing the Taylor expansion over the powers of intensity. The theory has been applied for modeling of three-photon absorption induced upconverted stimulated emission of organic molecules in solvents. Numerical results are presented for the organic chromophore 4-[N-(2-hydroxyethyl)-N-(methyl)amino phenyl]-4'-(6-hydroxyhexyl sulfonyl) stilbene dissolved in dimethyl sulfoxide. The results are in good agreement with available experimental results.

  • 2.
    Baev, Alexander
    et al.
    KTH, Superseded Departments, Biotechnology.
    Rubio-Pons, Oscar
    KTH, Superseded Departments, Biotechnology.
    Gel'Mukhanov, Faris
    KTH, Superseded Departments, Biotechnology.
    Ågren, Hans
    KTH, Superseded Departments, Biotechnology.
    Optical limiting properties of Zinc- and Platinum-based organometallic compounds2004In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 108, no 36, p. 7406-7416Article in journal (Refereed)
    Abstract [en]

    Optical power limiting is theoretically studied using an approach that combines quantum electronic structure calculations of multiphoton excitations and classical calculations of dynamical wave propagation. We illustrate the capability of such a combined approach by presenting results for a couple of organometallic compounds; basic metal-base porphyrins, vinylphenylamine porhyrin, and the so-called type IVc platinum compound. A comparative analysis of their electronic properties related to nonlinear absorption of electromagnetic radiation and their optical limiting capability has been performed based on dynamical simulations of the nonlinear pulse propagation taking account of resonant as well as off-resonant effects. Several key features and rate-limiting steps in the transmission have been examined in relation to various characteristics of the pulse. It is found that the resonant vs off-resonant conditions, the saturation conditions and the dephasing play critical roles for the nonlinear transmission. The saturation effects are sensitive to the pulse duration, the inter-system crossing rate and the quenching of the higher triplet state. The inter-system crossing rate has to be comparable with the inverse pulse duration in order to boost the stepwise two-photon channel associated with singlet-singlet followed by triplet-triplet transitions. It is illustrated that structure-to-property relations of the rate-limiting steps serve as important criteria for choices of compounds suitable for the application of interest.

  • 3. Feifel, R.
    et al.
    Baev, Alexander
    KTH, Superseded Departments, Chemistry.
    Gel'mukhanov, Faris
    KTH, Superseded Departments, Chemistry.
    Ågren, Hans
    KTH, Superseded Departments, Chemistry.
    Andersson, M.
    Ohrwall, G.
    Piancastelli, M. N.
    Miron, C.
    Sorensen, S. L.
    de Brito, A. N.
    Bjorneholm, O.
    Karlsson, L.
    Svensson, S.
    Role of stray light in the formation of high-resolution resonant photoelectron spectra: an experimental and theoretical study of N-22004In: Journal of Electron Spectroscopy and Related Phenomena, ISSN 0368-2048, E-ISSN 1873-2526, Vol. 134, no 1, p. 49-65Article in journal (Refereed)
    Abstract [en]

    We show that the undular stray light, diffusely scattered by the optical system of a synchrotron beamline, can play an important role in the formation of high-resolution resonant photoelectron (RPE) spectra. The influence of the stray light is mediated through the Stokes doubling effect, with the Lorentzian tail of the spectral function being replaced by a more complicated form. This effect is shown to appear in the high-resolution resonant photoelectron spectrum of the N-2 molecule in which the spectral shape of the non-Raman (NR) bands differs qualitatively for the A(2)Pi(u) and X(2)Sigma(g)(+) final states. A particularly large enhancement of the non-Raman Stokes line is observed for the A-state while the picture is inverted for the X-state where the non-Raman band is suppressed. It is shown that the resonant photoemission profile is affected by two qualitatively different detunings, the detuning of the monochromatized line relative to the photoabsorption line and the detuning of the undulator harmonic relative to the same reference line. The experimental data show that the relative intensity of the non-Raman line strongly depends on the tuning of the undulator harmonic with respect to the selected monochromator bandpass, leading to a strong decrease of the Stokes line intensity for certain undulator detunings. A clear red-shift asymmetry for the decrease in the Stokes line intensity is observed when the monochromator line is detuned towards negative photon frequencies, whereas the picture is reverted for the situation of a positively detuned monochromator line. The results show the necessity to control the stray light and to investigate both the Raman and non-Raman contributions to the spectral profiles in order to avoid misinterpretation and in order to make full use of the information available in resonant photoemission spectra of molecules.

  • 4. Feifel, R.
    et al.
    Baev, Alexander
    KTH, Superseded Departments, Biotechnology.
    Gel'mukhanov, Faris
    KTH, Superseded Departments, Biotechnology.
    Ågren, Hans
    KTH, Superseded Departments, Biotechnology.
    Piancastelli, M. N.
    Andersson, M.
    Öhrwall, G.
    Miron, C.
    Meyer, M.
    Sorensen, S. L.
    de Brito, A. N.
    Björneholm, O.
    Karlsson, L.
    Svensson, S.
    Generalization of the duration-time concept for interpreting high-resolution resonant photoemission spectra2004In: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 69, no 2, p. 022707-Article in journal (Refereed)
    Abstract [en]

    The duration-time concept, vastly successful for interpreting the frequency dependence of resonant radiative and nonradiative x-ray scattering spectra, is tested for fine-scale features that can be obtained with state of the art high-resolution spectroscopy. For that purpose resonant photoelectron (RPE) spectra of the first three outermost singly ionized valence states X (2)Sigma(g)(+), A (2)Pi(u), and B (2)Sigma(u)(+), are measured for selective excitations to different vibrational levels (up to n=13) of the N 1s-->pi(*) photoabsorption resonance in N-2 and for negative photon frequency detuning relative to the adiabatic 0-0 transition of this resonance. It is found that different parts of the RPE spectrum converge to the spectral profile of direct photoionization (fast scattering) for different detunings, and that the RPE profiles are asymmetrical as a function of frequency detuning. The observed asymmetry contradicts the picture based on the simplified notation of a common scattering duration time, but is shown to agree with the here elaborated concept of partial and mean duration times. Results of the measurements and the simulations show that the duration time of the scattering process varies for different final electronic and different final vibrational states. This owes to two physical reasons: one is the competition between the fast vertical and the slow resonant scattering channels and the other is the slowing down of the scattering process near the zeros of the real part of the scattering amplitude.

  • 5. Feifel, R.
    et al.
    Kimberg, Victor
    KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
    Baev, Alexander
    KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
    Gel'mukhanov, Faris
    KTH, Superseded Departments, Biotechnology.
    Ågren, Hans
    KTH, Superseded Departments, Biotechnology.
    Miron, C.
    Ohrwall, G.
    Piancastelli, M. N.
    Sorensen, S. L.
    Karlsson, L.
    Svensson, S.
    Profile of resonant photoelectron spectra versus the spectral function width and photon frequency detuning2004In: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 70, no 3Article in journal (Refereed)
    Abstract [en]

    The outermost, singly ionized valence state of N-2, the X (2)Sigma(g)(+) state, is investigated in detail as a function of the photon frequency bandwidth for core excitation to the N 1s-->pi(*) resonance, where the photon frequency is tuned in between the first two vibrational levels of this bound intermediate electronic state. We find a strong, nontrivial dependence of the resulting resonant photoemission spectral profile on the monochromator function width and the frequency of its peak position. For narrow bandwidth excitation we observe a well resolved vibrational fine structure in the final electron spectrum, which for somewhat broader bandwidths gets smeared out into a continuous structure. For even broader monochromator bandwidths, it converts again into a well resolved vibrational progression. In addition, spectral features appearing below the adiabatic transition energy of the ground state of N-2(+) are observed for broadband excitation. A model taking into account the interplay of the partial scattering cross section with the spectral function is presented and applied to the X (2)Sigma(g)(+) final state of N-2(+).

  • 6. Friedlein, R.
    et al.
    Sorensen, S. L.
    Baev, Alexander
    KTH, Superseded Departments, Biotechnology.
    Gel'mukhanov, Faris
    KTH, Superseded Departments, Biotechnology.
    Birgerson, J.
    Crispin, A.
    de Jong, M. P.
    Osikowicz, W.
    Murphy, C.
    Ågren, Hans
    KTH, Superseded Departments, Biotechnology.
    Salaneck, W. R.
    Role of electronic localization and charge-vibrational coupling in resonant photoelectron spectra of polymers: Application to poly(para-phenylenevinylene)2004In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 69, no 12Article in journal (Refereed)
    Abstract [en]

    A combination of x-ray absorption and resonant photoemission (RPE) spectroscopy has been used to study the electronic structure of the one-dimensional conjugated polymer poly (para-phenylenevinylene) in nonordered (as prepared) thin films. The dispersion of RPE features for the decay to localized and delocalized bands are qualitatively different. A theory for band dispersion of RPE in polymers is given, showing the important roles of electronic state localization and vibrational (phonon) excitations for the character of the dispersion.

  • 7.
    Kimberg, Victor
    et al.
    KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
    Polyutov, Sergey
    KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
    Gel'mukhanov, Faris
    KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
    Ågren, Hans
    KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
    Baev, Alexander
    KTH, School of Biotechnology (BIO), Theoretical Chemistry (closed 20110512).
    Zheng, Q.D.
    Institute for Lasers, Photonics and Biophotonics, State University of New York at Buffalo.
    He, G. S.
    Institute for Lasers, Photonics and Biophotonics, State University of New York at Buffalo.
    Dynamics of cavityless lasing generated by ultrafast multiphoton excitation2006In: Physical Review A. Atomic, Molecular, and Optical Physics, ISSN 1050-2947, E-ISSN 1094-1622, Vol. 74, no 3, article id 033814Article in journal (Refereed)
    Abstract [en]

    A dynamical theory is developed with the purpose of explaining recent experimental results on multiphoton-excited amplified stimulated emission (ASE). Several conspicuous features of this experiment are analyzed, like the threshold dependence of the spectral profile on the pump intensity, and spectral shifts of the ASE pulses co- and counterpropagating relative to the pump pulse. Two models are proposed and evaluated, one based on the isolated molecule and another which involves solvent interaction. The spectral shift between the forward and backward ASE pulses arises in the first model through the competition between the ASE transitions from the pumped vibrational levels and from the bottom of the excited-state well, while in the solvent-related model the dynamical solute-solvent interaction leads to a relaxed excited state, producing an additional ASE channel. In the latter model the additional redshifted ASE channel makes the dynamics of ASE essentially different from that in the molecular model because the formation of the relaxed state takes a longer time. The variation of the pump intensity influences strongly the relative intensities of the different ASE channels and, hence, the spectral shape of ASE in both models. The regime of ASE changes character when the pump intensity crosses a threshold value. Such a phase transition occurs when the ASE rate approaches the rate of vibrational relaxation or the rate of solute-solvent relaxation in the first excited state.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf