Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Almeida, Diogo
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH.
    Ambrus, Rares
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Caccamo, Sergio
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Chen, Xi
    KTH.
    Cruciani, Silvia
    Pinto Basto De Carvalho, Joao F
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Haustein, Joshua
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Marzinotto, Alejandro
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Vina, Francisco
    KTH.
    Karayiannidis, Yannis
    KTH.
    Ögren, Petter
    KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Optimization and Systems Theory.
    Jensfelt, Patric
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Team KTH’s Picking Solution for the Amazon Picking Challenge 20162017In: Warehouse Picking Automation Workshop 2017: Solutions, Experience, Learnings and Outlook of the Amazon Robotics Challenge, 2017Conference paper (Other (popular science, discussion, etc.))
    Abstract [en]

    In this work we summarize the solution developed by Team KTH for the Amazon Picking Challenge 2016 in Leipzig, Germany. The competition simulated a warehouse automation scenario and it was divided in two tasks: a picking task where a robot picks items from a shelf and places them in a tote and a stowing task which is the inverse task where the robot picks items from a tote and places them in a shelf. We describe our approach to the problem starting from a high level overview of our system and later delving into details of our perception pipeline and our strategy for manipulation and grasping. The solution was implemented using a Baxter robot equipped with additional sensors.

  • 2.
    Carvalho, J. Frederico
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Pequito, S.
    Aguiar, A. P.
    Kar, S.
    Johansson, Karl Henrik
    KTH, School of Electrical Engineering (EES), Automatic Control.
    Composability and controllability of structural linear time-invariant systems: Distributed verification2017In: Automatica, ISSN 0005-1098, E-ISSN 1873-2836, Vol. 78, p. 123-134Article in journal (Refereed)
    Abstract [en]

    Motivated by the development and deployment of large-scale dynamical systems, often comprised of geographically distributed smaller subsystems, we address the problem of verifying their controllability in a distributed manner. Specifically, we study controllability in the structural system theoretic sense, structural controllability, in which rather than focusing on a specific numerical system realization, we provide guarantees for equivalence classes of linear time-invariant systems on the basis of their structural sparsity patterns, i.e., the location of zero/nonzero entries in the plant matrices. Towards this goal, we first provide several necessary and/or sufficient conditions that ensure that the overall system is structurally controllable on the basis of the subsystems’ structural pattern and their interconnections. The proposed verification criteria are shown to be efficiently implementable (i.e., with polynomial time-complexity in the number of the state variables and inputs) in two important subclasses of interconnected dynamical systems: similar (where every subsystem has the same structure) and serial (where every subsystem outputs to at most one other subsystem). Secondly, we provide an iterative distributed algorithm to verify structural controllability for general interconnected dynamical system, i.e., it is based on communication among (physically) interconnected subsystems, and requires only local model and interconnection knowledge at each subsystem.

  • 3.
    Carvalho, Joao Frederico
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Pequito, S.
    University of Pennsylvania, USA.
    Aguiar, A. P.
    University of Porto (FEUP), Portugal.
    Kar, S.
    Carnegie Mellon University, USA.
    Pappas, G. J.
    University of Pennsylvania, USA.
    Static output feedback: On essential feasible information patterns2016In: Proceedings of the IEEE Conference on Decision and Control, IEEE conference proceedings, 2016, p. 3989-3994Conference paper (Refereed)
    Abstract [en]

    In this paper, for linear time-invariant plants, where a collection of possible inputs and outputs are known a priori, we address the problem of determining the communication between outputs and inputs, i.e., information patterns, such that desired control objectives of the closed-loop system (for instance, stabilizability) through static output feedback may be ensured.

  • 4.
    Carvalho, Joao Frederico
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Vejdemo-Johansson, Mikael
    CUNY, Math Dept, Coll Staten Isl, New York, NY 10021 USA..
    Kragic, Danica
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Pokorny, Florian T.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    An algorithm for calculating top-dimensional bounding chains2018In: PEERJ COMPUTER SCIENCE, ISSN 2376-5992, article id e153Article in journal (Refereed)
    Abstract [en]

    We describe the Coefficient-Flow algorithm for calculating the bounding chain of an (n-1)-boundary on an n-manifold-like simplicial complex S. We prove its correctness and show that it has a computational time complexity of O(vertical bar S(n-1)vertical bar) (where S(n-1) is the set of (n-1)-faces of S). We estimate the big-O coefficient which depends on the dimension of S and the implementation. We present an implementation, experimentally evaluate the complexity of our algorithm, and compare its performance with that of solving the underlying linear system.

  • 5.
    Pinto Basto de Carvalho, Joao Frederico
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.
    Topological Methods for Motion Prediction and Caging2020Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    To fulfill the requirements of automation in unstructured environmentsit will be necessary to endow robots with the ability to plan actions thatcan handle the dynamic nature of changing environments and are robust toperceptual errors. This thesis focuses on the design of algorithms to facilitatemotion planning in human environments and rigid object manipulation.Understanding human motion is a necessary first step to be able to performmotion planning in spaces that are inhabited by humans. Specifically throughlong-term prediction a robot should be able to plan collision-avoiding paths tocarry out whatever tasks are required of it. In this thesis we present a methodto classify motions by clustering paths, together with a method to translatethe resulting clusters into motion patterns that can be used to predict motion.Another challenge of robotics is the manipulation of everyday objects.Even in the realm of rigid objects, safe object-manipulation by either grippersor dexterous robotic hands requires complex physical parameter estimation.Such estimations are often error-prone and misestimations may cause completefailure to execute the desired task. Caging is presented as an alternativeapproach to classical manipulation by employing topological invariants todetermine whether an object is secured with only bounded mobility. Wepresent a method to decide whether a rigid object is in fact caged by a givengrasp or not, relying only on a rough approximation of the object and thegripper.

  • 6.
    Pinto Basto de Carvalho, Joao Frederico
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.
    Vejdemo-Johansson, Mikael
    CUNY College of Staten Island,Mathematics Department,New York,USA.
    Pokorny, Florian T.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.
    Kragic, Danica
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.
    Long-term Prediction of Motion Trajectories Using Path Homology Clusters2019In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Institute of Electrical and Electronics Engineers (IEEE), 2019Conference paper (Refereed)
    Abstract [en]

    In order for robots to share their workspace with people, they need to reason about human motion efficiently. In this work we leverage large datasets of paths in order to infer local models that are able to perform long-term predictions of human motion. Further, since our method is based on simple dynamics, it is conceptually simple to understand and allows one to interpret the predictions produced, as well as to extract a cost function that can be used for planning. The main difference between our method and similar systems, is that we employ a map of the space and translate the motion of groups of paths into vector fields on that map. We test our method on synthetic data and show its performance on the Edinburgh forum pedestrian long-term tracking dataset [1] where we were able to outperform a Gaussian Mixture Model tasked with extracting dynamics from the paths.

  • 7.
    Varava, Anastasiia
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
    Pinto Basto de Carvalho, Joao Frederico
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.
    Kragic, Danica
    KTH, Superseded Departments (pre-2005), Numerical Analysis and Computer Science, NADA. KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.
    Free Space of Rigid Objects: Caging, Path Non-Existence, and Narrow Passage DetectionIn: The international journal of robotics research, ISSN 0278-3649, E-ISSN 1741-3176Article in journal (Refereed)
    Abstract [en]

    In this work we propose algorithms to explicitly construct a conservative estimate of the configuration spaces of rigid objects in 2D and 3D. Our approach is able to detect compact path components and narrow passages in configuration space which are important for applications in robotic manipulation and path planning. Moreover, as we demonstrate, they are also applicable to identification of molecular cages in chemistry. Our algorithms are based on a decomposition of the resulting 3 and 6 dimensional configuration spaces into slices corresponding to a finite sample of fixed orientations in configuration space. We utilize dual diagrams of unions of balls and uniform grids of orientations to approximate the configuration space. We carry out experiments to evaluate the computational efficiency on a set of objects with different geometric features thus demonstrating that our approach is applicable to different object shapes. We investigate the performance of our algorithm by computing increasingly fine-grained approximations of the object's configuration space.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf