Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Besharat, Zahra
    et al.
    KTH, School of Engineering Sciences (SCI), Applied Physics, Material Physics, MF. KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Ghadami Yazdi, Milad
    KTH, School of Engineering Sciences (SCI), Applied Physics, Material Physics, MF.
    Wakeham, Deborah
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Johnson, Magnus
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Rutland, Mark W.
    SP Technical Research Institute of Sweden, Sweden.
    Göthelid, Mats
    KTH, School of Engineering Sciences (SCI), Applied Physics, Material Physics, MF.
    Grönbeck, Henrik
    Se-C Cleavage of Hexane Selenol at Steps on Au(111)2018In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 34, no 8, p. 2630-2636Article in journal (Refereed)
    Abstract [en]

    Selenols are considered as an alternative to thiols in self-assembled monolayers, but the Se-C bond is one limiting factor for their usefulness. In this study, we address the stability of the Se-C bond by a combined experimental and theoretical investigation of gas phase-deposited hexane selenol (CH3(CH2)(5)SeH) on Au(111) using photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory (DFT). Experimentally, we find that initial adsorption leaves atomic Se on the surface without any carbon left on the surface, whereas further adsorption generates a saturated selenolate layer. The Se 3d component from atomic Se appears at 0.85 eV lower binding energy than the selenolate-related component. DFT calculations show that the most stable structure of selenols on Au(111) is in the form of RSe-Au-SeR complexes adsorbed on the unreconstructed Au(111) surface. This is similar to thiols on Au(111). Calculated Se 3d core-level shifts between elemental Se and selenolate in this structure nicely reproduce the experimentally recorded shifts. Dissociation of RSeH and subsequent formation of RH are found to proceed with high barriers on defect-free Au(111) terraces, with the highest barrier for scissoring R-Se. However, at steps, these barriers are considerably lower, allowing for Se-C bond breaking and hexane desorption, leaving elemental Se at the surface. Hexane is the selenol to selenolate formed by replacing the Se-C bond with a H-C bond by using the hydrogen liberated from transformation.

  • 2.
    Besharat, Zahra
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.
    Göthelid, Mats
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.
    Wakeham, Deborah
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Johnson, C. Magnus
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Rutland, Mark W.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Ghadami Yazdi, Milad
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.
    Se-C cleavage of hexane selenol at steps on Au(111)Manuscript (preprint) (Other academic)
  • 3.
    Besharat, Zahra
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.
    Wakeham, Deborah
    KTH, School of Chemical Science and Engineering (CHE), Chemistry.
    Johnson, C. Magnus
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Odnevall Wallinder, Inger
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Göthelid, Mats
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.
    Rutland, Mark W.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Mixed monolayers of alkane thiols with polar terminal group on gold: Investigation of structure dependent surface properties2016In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 484, no 279, p. 279-290, article id j.jcis.2016.08.053Article in journal (Refereed)
    Abstract [en]

    Adsorption of thiols with cationic or anionic terminal group on gold has been studied from mixed solutions of 11-Amino-1-undecanethiol (AUT) and 3-Mercaptopropionic acid (MPA) using Quartz Crystal Microbalance with Dissipation (QCM-D), X-ray Photoelectron Spectroscopy (XPS), atomic force microscopy (AFM) and contact angles. The goal is to probe the nature of such layers, and the additivity or otherwise of the pH responsiveness, with a view to evaluate their suitability as smart materials. For each of the two pure (unmixed) cases, ordered molecular monolayers are formed with sulfur binding to gold and the alkane chain pointing out from the surface as expected. Adsorption from the thiol mixtures, however, leads to a more complex behaviour. The surface concentration of thiols from the mixtures, as determined by QCM-D, is considerably lower than for the pure cases and it reaches a minimum at a 3:1 MPA/AUT relative concentration in the solution. The XPS results confirm a reduction in adsorbed amount in mixtures with the lowest overall intensity for the 3:1 ratio. Monolayers formed from mixtures display a wettability which is much lower and less pH sensitive. Collectively these results confirm that for adsorption from mixed systems, the configuration is completely different. Complex formation in the mixed solutions leads to the adsorption of molecules parallel to the surface in an axially in-plane configuration. This parallel layer of thiols is mechanically relatively robust to nano-shaving based on AFM measurements. These results will have a significant impact on the design of biomimetic surface coatings particularly when mixtures of oppositely charged molecules are present on the surface, as is commonly the case in biological, proteinaceous surfaces (e.g. hair and skin).

  • 4.
    Wakeham, Deborah
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Crivoi, Dana G.
    Medina, Francesc
    Segarra, Anna M.
    Rutland, Mark W.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science. SP Technical Research Institute of Sweden.
    In-situ study of substrate - catalyst interactions in a Julia-Colonna epoxidation using quartz crystal microbalance with dissipation2016In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 469, p. 263-268Article in journal (Refereed)
    Abstract [en]

    Quartz crystal microbalance with dissipation (QCM-D) analysis of the hexa-L-Leucine (PLL)-catalyzed epoxidation of chalcone gives in-situ experimental evidences which demonstrate that the reaction proceeds mainly via the formation of a PLL-bound hydroperoxide complex followed by the reversible addition of chalcone. The observations offer an alternative rationalization for the viability of the preferred catalytic pathway.

  • 5.
    Álvarez Asencio, Rubén
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Cranston, Emily
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Wakeham, Deborah
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Niga, Petru
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Werzer, O.
    Sweeney, J.
    Hausen, F.
    Hayes, R.
    Webber, G. B.
    Endres, F.
    Bennewitz, R.
    Hjalmarsson, Nicklas
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Glavatskih, Sergei
    KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Machine Design (Div.).
    Atkin, R.
    Rutland, Mark
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
    Nanotribology: Tribotronics, ionic liquids and control of surface interactions2013In: 5th World Tribology Congress, WTC 2013, 2013, Vol. 4, p. 3106-3108Conference paper (Refereed)
    Abstract [en]

    The interfacial ordering of Ionic liquids leads to interesting nanotribological properties as revealed by colloid probe studies. The first of these is the clear correlation between the number of ion pairs trapped in the tribological contact and the friction coefficient displayed. The second is the fact that the surface electrical potential can be used to control the composition of the boundary layer and thus tune the friction. Thirdly, the interfacial ordering appears to significantly affect the fluid dynamics over large distances.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf