Ändra sökning
Avgränsa sökresultatet
1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Ghorbani, Morteza
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Medicinteknik och hälsosystem, Medicinsk avbildning.
    Olofsson, Karl
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    Benjamins, Jan-willem
    Loskutova, Ksenia
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Medicinteknik och hälsosystem, Medicinsk avbildning.
    Paulraj, Thomas
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Wiklund, Martin
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
    Grishenkov, Dmitry
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Medicinteknik och hälsosystem, Medicinsk avbildning.
    Svagan, Anna Justina
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Unravelling the Acoustic and Thermal Responses of Perfluorocarbon Liquid Droplets Stabilized with Cellulose NanofibersIngår i: Artikel i tidskrift (Refereegranskat)
  • 2.
    Ghorbani, Morteza
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Medicinteknik och hälsosystem, Medicinsk avbildning.
    Olofsson, Karl
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    Benjamins, Jan-Willem
    Research Institute of Sweden (RISE), Chemistry, Materials and Surfaces, Box 5607, SE-114 86 Stockholm, Sweden.
    Loskutova, Ksenia
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Medicinteknik och hälsosystem, Medicinsk avbildning.
    Paulraj, Thomas
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Wiklund, Martin
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Biomedicinsk fysik och röntgenfysik.
    Grishenkov, Dmitry
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Medicinteknik och hälsosystem, Medicinsk avbildning.
    Svagan, Anna Justina
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Unravelling the Acoustic and Thermal Responses of Perfluorocarbon Liquid Droplets Stabilized with Cellulose Nanofibers2019Ingår i: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The attractive colloidal and physicochemical properties of cellulose nanofibers (CNFs) at interfaces have recently been exploited in the facile production of a number of environmentally benign materials, e.g. foams, emulsions, and capsules. Herein, these unique properties are exploited in a new type of CNF-stabilized perfluoropentane droplets produced via a straightforward and simple mixing protocol. Droplets with a comparatively narrow size distribution (ca. 1–5 μm in diameter) were fabricated, and their potential in the acoustic droplet vaporization process was evaluated. For this, the particle-stabilized droplets were assessed in three independent experimental examinations, namely temperature, acoustic, and ultrasonic standing wave tests. During the acoustic droplet vaporization (ADV) process, droplets were converted to gas-filled microbubbles, offering enhanced visualization by ultrasound. The acoustic pressure threshold of about 0.62 MPa was identified for the cellulose-stabilized droplets. A phase transition temperature of about 22 °C was observed, at which a significant fraction of larger droplets (above ca. 3 μm in diameter) were converted into bubbles, whereas a large part of the population of smaller droplets were stable up to higher temperatures (temperatures up to 45 °C tested). Moreover, under ultrasound standing wave conditions, droplets were relocated to antinodes demonstrating the behavior associated with the negative contrast particles. The combined results make the CNF-stabilized droplets interesting in cell-droplet interaction experiments and ultrasound imaging.

  • 3.
    Nordenström, Malin
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Riazanova, Anastasia
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Järn, Mikael
    RISE Res Inst Sweden, Div Biosci & Mat, SE-11428 Stockholm, Sweden..
    Paulraj, Thomas
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Turner, Charlotta
    Lund Univ, Dept Chem, SE-22100 Lund, Sweden..
    Ström, Valter
    KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap.
    Olsson, Richard
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Svagan, Anna
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Superamphiphobic coatings based on liquid-core microcapsules with engineered capsule walls and functionality2018Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, artikel-id 3647Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Microcapsules with specific functional properties, related to the capsule wall and core, are highly desired in a number of applications. In this study, hybrid cellulose microcapsules (1.2 +/- 0.4 mu m in diameter) were prepared by nanoengineering the outer walls of precursor capsules. Depending on the preparation route, capsules with different surface roughness (raspberry or broccoli-like), and thereby different wetting properties, could be obtained. The tunable surface roughness was achieved as a result of the chemical and structural properties of the outer wall of a precursor capsule, which combined with a new processing route allowed in-situ formation of silica nanoparticles (30-40 nm or 70 nm in diameter). By coating glass slides with "broccoli-like" microcapsules (30-40 nm silica nanoparticles), static contact angles above 150 degrees and roll-off angles below 6 degrees were obtained for both water and low surface-tension oil (hexadecane), rendering the substrate superamphiphobic. As a comparison, coatings from raspberry-like capsules were only strongly oleophobic and hydrophobic. The liquid-core of the capsules opens great opportunities to incorporate different functionalities and here hydrophobic superparamagnetic nanoparticles (SPIONs) were encapsulated. As a result, magnetic broccoli-like microcapsules formed an excellent superamphiphobic coating-layer on a curved geometry by simply applying an external magnetic field.

  • 4.
    Paulraj, Thomas
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Plant cell-inspiredmicrocontainers: Fabrication, Characterization and Applications2019Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [sv]

    Biomimetiska material har inspirerat mänskligheten sedan längeför applikationer inom olika områden. Framställningen av lipidbaserade vesiklarhar särskilt bidragit till vår förståelse av olika funktioner i djurceller samt tjänatsom t.ex. läkemedelsleveranssystem och bioreaktorer. Tvärtom är beredningen avsyntetiska växtceller begränsad, vilket främst beror på utmaningarna med attbygga och kombinera den komplexa primära cellvägg en med ett lipid-baseratplasmamembran.Denna avhandling fokuserar på ”bottom-up” tillverkning avbiomimetiska mikrobehållare som kan fungera som enkla modellsystem förväxtceller. I den första delen undersöks växelverkningarna mellanväxtcellväggspolysackariderna, cellulosa-nanofibrer (CNF), pektin och xyloglucan.Kunskapen används i nästa steg vid tillverkning av mikrokapslar. Resultaten visaratt, om man vill införliva alla tre polysackarider, måste de adsorberas i en specifikordning. Dessutom beror den strukturella stabiliteten och permeabiliteten hoskapselväggen på kapselväggkompositionen. Permeabiliteten beror också påsammansättningen hos den omgivande vätskan.Den andra delen behandlar tillverkning av mer avanceradebiomimetiska mikrokapslar, som innehåller ett lipidskikt underpolysackaridkapselväggen. Dessa kapslar är permeabla för vissa storlekar avmolekyler men inte andra. Lipidernas fasbeteende utnyttjas för att växa tubulärastrukturer (långa trådformade strukturer) genom kapselväggen, samt för att skapaen inre kapselmiljö som består av många små vesiklar. Växtceller i naturenanvänder rörformade strukturer (så kallade plasmodesmata) för att transporteramolekyler mellan närliggande celler.I den tredje delen diskuteras applikationsorienterade aspekter.Mikrokapslarna, som tillverkat med LbL-tekniken (från den första delen), kanladdas med ett glukosoxidas-enzym, varigenom de går att använda somglukossensor. Permeabilitetsegenskaperna hos kapselväggen tillåter bara att småmolekyler att passerar snabbt. Slutligen visar cellkultursexperiment att kapslarnaär biokompatibla, vilket banar väg för nya biomedicinska applikationer.

    Publikationen är tillgänglig i fulltext från 2020-10-01 11:00
  • 5.
    Paulraj, Thomas
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Crespo, Gaston
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi.
    Svagan, Anna
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Cage-like cellulose nanofiber-based microcapsules for electrochemical and biosensor applications2018Ingår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 256Artikel i tidskrift (Övrigt vetenskapligt)
  • 6.
    Paulraj, Thomas
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Riazanova, A. V.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Svagan, A. J.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Centra, Wallenberg Wood Science Center.
    Bioinspired capsules based on nanocellulose, xyloglucan and pectin - The influence of capsule wall composition on permeability properties2018Ingår i: Acta Biomaterialia, ISSN 1742-7061, E-ISSN 1878-7568, Vol. 69, s. 196-205Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Materials based on renewable biopolymers, selective permeability and stimuli-responsive release/loading properties play an important role in biomedical applications. Here, in order to mimic the plant primary cell-wall, microcapsules have been fabricated using cell wall polysaccharides, namely pectin, xyloglucan and cellulose nanofibers. For the first time, a large amount of xyloglucan was successfully included in such capsules. These capsules demonstrated stimuli-responsive (ON/OFF) permeability and biocompatibility. The live cell staining revealed that the microcapsules' surface enhanced cell growth and also the non-toxic nature of the microcapsules. In water, the microcapsules were completely and partially permeable to fluorescent dextrans with an average molecular weight of 70 kDa (hydrodynamic diameter of ca. 12 nm) and 2000 kDa (ca. 54 nm), respectively. On the other hand, the permeability dropped quickly when the capsules were exposed to 250 mM NaCl solution, trapping a fraction of the 70 kDa dextrans in the capsule interior. The decrease in permeability was a direct consequence of the capsule-wall composition, i.e. the presence of xyloglucan and a low amount of charged molecules such as pectin. The low permeability of capsules in saline conditions (and in a model biological medium), combined with a capsule wall that is made from dietary fibers only, potentially enables their use in biological applications, such as colon targeted delivery in the gastro-intestinal tract. 

  • 7.
    Paulraj, Thomas
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Riazanova, Anastasia
    Yao, Kun
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Andersson, Richard L.
    Müllertz, Anette
    Svagan, Anna Justina
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Bioinspired Layer-by-Layer Microcapsules Based on CelluloseNanofibers with Switchable Permeability2017Ingår i: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 18, s. 1401-1410Artikel i tidskrift (Refereegranskat)
  • 8.
    Paulraj, Thomas
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Svagan, Anna Justina
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Bioinspired capsules based on nanocellulose, xyloglucan and pectin for biomedical applications2018Ingår i: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 255Artikel i tidskrift (Övrigt vetenskapligt)
  • 9.
    Paulraj, Thomas
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wennmalm, Stefan
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Experimentell biomolekylär fysik. KTH, Centra, Science for Life Laboratory, SciLifeLab. ..
    Riazanova, Anastasia, V
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Wu, Qiong
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Crespo, Gaston A.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Svagan, Anna J.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Porous Cellulose Nanofiber-Based Microcapsules for Biomolecular Sensing2018Ingår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, nr 48, s. 41146-41154Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cellulose nanofibers (CNFs) have recently attracted a lot of attention in sensing because of their multifunctional character and properties such as renewability, nontoxicity, biodegradability, printability, and optical transparency in addition to unique physicochemical, barrier, and mechanical properties. However, the focus has exclusively been devoted toward developing two-dimensional sensing platforms in the form of nanopaper or nanocellulose-based hydrogels. To improve the flexibility and sensing performance in situ, for example, to detect biomarkers in vivo for early disease diagnostics, more advanced CNF-based structures are needed. Here, we developed porous and hollow, yet robust, CNF-based microcapsules using only the primary plant cell wall components, CNF, pectin, and xyloglucan, to assemble the capsule wall. The fluorescein isothiocyanate-labeled dextrans with M-w of 70 and 2000 kDa could enter the hollow capsules at a rate of 0.13 +/- 0.04 and 0.014 +/- 0.009 s(-1), respectively. This property is very attractive because it minimizes the influence of mass transport through the capsule wall on the response time. As a proof of concept, glucose oxidase (GOx) enzyme was loaded (and cross-linked) in the microcapsule interior with an encapsulation efficiency of 68 +/- 2%. The GOx-loaded microcapsules were immobilized on a variety of surfaces (here, inside a flow channel, on a carbon-coated sensor or a graphite rod) and glucose concentrations up to 10 mM could successfully be measured. The present concept offers new opportunities in the development of simple, more efficient, and disposable nanocellulose-based analytical devices for several sensing applications including environmental monitoring, healthcare, and diagnostics.

  • 10.
    Paulraj, Thomas
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi, Polymera material.
    Wennmalm, Stefan
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik. KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Wieland, D.C. Florian
    Dédinaité, Andra
    KTH, Tidigare Institutioner (före 2005), Kemi.
    Pomorski, T. Günther
    Cárdenas, M.
    Svagan, Anna Justina
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Fiber- och polymerteknologi.
    Assembly of Primary Cell-Wall inspired Microcontainers, Plantosomes, as a step towards a Synthetic Plant-CellManuskript (preprint) (Övrigt vetenskapligt)
1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf