Change search
Refine search result
1 - 19 of 19
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dong, Lin
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Optical Properties of Nanoparticles in Composite Materials2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Nanoparticles are synthetic structures with dimension from 1 to 100 nanometers and are various in types. Some favorable properties peculiar to the nanoparticles (generally owing to size effects) make them prevailing and beneficial for applications in different scientific and engineering fields. A large portion of these properties find their connection to optics and photonics. In the context of optics, the thesis is devoted to study of two specific categories of nanoparticles, gold nanoparticles and CdSe-CdS core-shell quantum dots, aiming at investigating the influence and potential of the particles in applications of lasing and medical diagnosis/treatment.

    Gold nanoparticles have been widely exploited in radiative decay engineering to achieve fluorescence enhancement or quenching of fluorophores, with the help of a localized surface plasmon resonance band in visible range. As the technique is recently introduced to lasing applications, the influence of the gold nanoparticles on the photostability of the gain medium needs more attention. In this work, the effect of size and concentration of gold nanoparticles on altering the photostability of aqueous solution of Rhodamine 6G in lasing process is demonstrated and analyzed. Energy transfer and nanoparticle induced heat are found to be responsible for the acceleration of photobleaching. It is shown that coating the gold nanoparticles with a 15 nm thick silica layer can effectively diminish the photostability degradation of the gain medium.

    Gold nanorods are popular for in vivo diagnostic and therapeutic applications due to their strong absorption of near-infrared light. A novel type of multimodal nanoparticles based on gold nanorods is synthesized here and optically characterized. The coating of silica and gadolinium oxide carbonate hydrate renders the nanoparticles superior performance as MRI/CT contrast agents than commercially available products. Meanwhile, the precise temperature control of bio-tissues using the particles under laser irradiation makes them promising for photothermal treatment of cancer cells.

    The thesis also addresses several open questions with respect to CdSe-CdS core-shell quantum dots. A numerical model is built to study the spatial separation of electrons and holes in the dots with different core/shell sizes. QDs in different geometrical shapes are investigated. It is found that the spherical core-shell QDs can be flexibly tuned between the type-I and the type-II regime by varying the dimensions of the core and the shell. The feature is confirmed by time-resolved photoluminescence measurements, in which the carrier recombinations from different spatial paths can be distinguished. A sign of amplified spontaneous emission is observed with spherical dots of an appropriate combination of core radius and shell thickness, indicating the potential of the QDs for lasing applications.

  • 2.
    Dong, Lin
    et al.
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Hu, Jun
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP. Zhejiang University, China.
    Ye, Fei
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Friberg, Ari T.
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP. Helsinki University of Technology, Finland.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Influence of nanoparticles concentration on fluorescence quenching in gold/rhodamine 6G nanoassemblies2009In: 2009 Asia Communications and Photonics Conference and Exhibition, ACP 2009, Optical Society of America, 2009, p. 5377045-Conference paper (Refereed)
    Abstract [en]

    Fluorescence enhancement of dye solution doped with gold nanoparticles is a well-known effect. However, depending on size and concentration, nanoparticles can also deteriorate dye lasing properties due to increased quenching of the excited molecules. Here we report experimental results on such dependence of fluorescence degradation on the nanoparticle concentration.

  • 3.
    Dong, Lin
    et al.
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics (Closed 20120101), Optics (Closed 20120101).
    Iyer, Srinivasan
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics (Closed 20120101), Optics (Closed 20120101).
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics (Closed 20120101), Optics (Closed 20120101).
    Friberg, Ari
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics (Closed 20120101), Optics (Closed 20120101).
    3D fabrication of waveguide and grating coupler in SU-8 by optimized gray scale electron beam lithography2010In: 2010 Asia Communications and Photonics Conference and Exhibition, ACP 2010, 2010, p. 542-543Conference paper (Refereed)
    Abstract [en]

    Gray scale electron beam lithography is optimized for simple and accurate prototyping of 3D waveguides and grating output couplers in SU-8. Gratings with complex profiles and free of lag effect can be realized with this technique.

  • 4.
    Dong, Lin
    et al.
    KTH, School of Information and Communication Technology (ICT).
    Iyer, Srinivasan
    KTH, School of Information and Communication Technology (ICT).
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT).
    Friberg, Ari
    KTH, School of Information and Communication Technology (ICT). Aalto University, Finland.
    Gray scale E-beam lithography to fabricate 3D microsized waveguide and grating coupler in SU-82010In: Frontiers in Optics, 2010Conference paper (Refereed)
    Abstract [en]

    Gray scale electron beam lithography is applied to prototype 3D waveguides and grating output couplers in SU-8 with simple and accurate method. The lag effect in reactive ion etching of Silicon-on-insulator gratings is avoided here.

  • 5.
    Dong, Lin
    et al.
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Pinos, Andrea
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Sugunan, Abhilash
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Li, Shanghua
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Friberg, Ari T.
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP. Helsinki University of Technology, Finland.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Measurement of radiative lifetime in CdSe/CdS core/shell structured quantum dots2009In: 2009 Asia Communications and Photonics Conference and Exhibition, ACP 2009, 2009, p. 5377385-Conference paper (Refereed)
    Abstract [en]

    Radiative lifetime of chemically synthesized colloidal CdSe/CdS core/shell quantum dots is measured. Influence of the core size on the electron-hole pair separation is analyzed. A long radiative lifetime and the existence of electron-hole pair separation suggest high potential of these dots as gain material to achieve lasing under continuous-wave excitation.

  • 6.
    Dong, Lin
    et al.
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Friberg, Ari
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    One-step fabrication of polymer components for microphotonics by gray scale electron beam lithography2011In: J EUR OPT SOC-RAPID PUBL, ISSN 1990-2573, Vol. 6, p. 11010-Article in journal (Refereed)
    Abstract [en]

    We demonstrate an application of gray scale electron beam lithography (EBL) for the fabrication of polymer waveguides and grating output couplers with depth variable features, using the SU-8 resist. The technique is mainly applicable for multi-level binary profile, where groove depths of the structure are controlled by choosing a proper exposure dose. Unlike reactive ion etching which is limited by the lag effect, the gray scale EBL allows free combination of groove widths and depths. Shrinking effect which is critical in polymer couplers' writing is taken into account and can be compensated. For better fabrication feasibility, the grating couplers can be simultaneously produced with waveguides with no inter-step alignment required. Therefore, this is a promising technique in manufacturing grating output couplers for polymer based waveguides with high performance in terms of mode matching/confinement and coupling efficiency.

  • 7.
    Dong, Lin
    et al.
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics.
    Sergeyev, Sergey
    Friberg, Ari T.
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Spatial light modulator as a reconfigurable intracavity dispersive element for tunable lasers2010In: Central European Journal of Physics, ISSN 1895-1082, E-ISSN 1644-3608, ISSN 1895-1082 print, Vol. 8, no 2, p. 228-234Article in journal (Refereed)
    Abstract [en]

    An improved approach for narrow-band wavelength selection in tunable lasers is described. To provide the tunability, a reconfigurable diffractive optical element (DOE) based on a programmable spatial light modulator (PSLM) is applied. With a proper choice of the phase transfer function of the PSLM, the device can be used as a dispersive intra-cavity component for precise tuning within the lasing spectral band of a solid-state dye laser. The suggested design allows avoiding the mechanical movement of any cavity components. The tunability performance and simulation are demonstrated using the Fourier optics method.

  • 8.
    Dong, Lin
    et al.
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Sugunan, Abhilash
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Hu, Jun
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Zhou, Sicheng
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Li, Shanghua
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Friberg, Ari T.
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Photoluminescence from quasi-type-II spherical CdSe-CdS core-shell quantum dots2013In: Applied Optics, ISSN 1559-128X, E-ISSN 2155-3165, Vol. 52, no 1, p. 105-109Article in journal (Refereed)
    Abstract [en]

    Spherical CdSe-CdS core-shell quantum dots (QDs) are found to be flexible in the transition between the type-I regime and the type-II regime with different core/shell dimensions. The quasi-type-II feature of the colloidal dots is confirmed with time-resolved photoluminescence (PL) measurements. Two recombination paths of the excitons with significantly different decay rates are observed and analyzed. The spherical CdSe-CdS core-shell QDs are numerically simulated to investigate the carrier separation. A relatively long radiative lifetime and high degree of spatial carrier separation provide good potential to achieve lasing under continuous-wave excitation. Amplified spontaneous emission at room temperature is detected from the QDs embedded in the polymer matrix. It is shown that a larger shell thickness results in a lower pumping threshold, while a smaller shell thickness leads to higher PL efficiency.

  • 9.
    Dong, Lin
    et al.
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Ye, Fei
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Chughtai, Adnan
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Liuolia, Vytautas
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Friberg, Ari T.
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Lasing From Water Solution of Rhodamine 6G/Gold Nanoparticles: Impact of SiO2-Coating on Metal Surface2012In: IEEE Journal of Quantum Electronics, ISSN 0018-9197, E-ISSN 1558-1713, Vol. 48, no 9, p. 1220-1226Article in journal (Refereed)
    Abstract [en]

    Gold nanoparticles embedded in an optical gain material, particularly in a water solution of Rhodamine 6G, used in dye lasers can both increase and damp dye flourescence, thus changing the laser output intensity. Simultaneously, such nanoparticles influence the gain material's resistance against photobleaching. In this paper, we report our study on the impact of the SiO2 coating of nanoparticles on the enhancement or quenching and photobleaching of the fluorescence. The investigation demonstrates a noticeable improvement of the gain material's photostability compared to uncoated gold nanoparticles when silicon dioxide coating is implemented.

  • 10.
    Dong, Lin
    et al.
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Ye, Fei
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Chughtai, Adnan
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Friberg, Ari T.
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Enhanced photostability of aqueous solution of Rhodamine 6G with gold nanoparticles in lasing process by silica coating2012In: 2012 Conference on Lasers and Electro-Optics, CLEO 2012, IEEE , 2012, p. 6325399-Conference paper (Refereed)
    Abstract [en]

    Gold nanoparticles are mixed in aqueous solution of Rhodamine 6G to modify the lasing output intensity. The photostability deterioration of the gain medium by gold nanoparticles is successfully compensated by silica coating on the nanoparticles.

  • 11.
    Dong, Lin
    et al.
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Ye, Fei
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Chughtai, Adnan
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Friberg, Ari T.
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Photostability of lasing process from water solution of Rhodamine 6G with gold nanoparticles2012In: Optics Letters, ISSN 0146-9592, E-ISSN 1539-4794, Vol. 37, no 1, p. 34-36Article in journal (Refereed)
    Abstract [en]

    We report the lasing performance and photobleaching of gain material containing a water solution of Rhodamine 6G dye and gold nanoparticles (NPs). In comparison to a pure dye solution, the investigated material demonstrated both enhancement and quenching of the lasing output, depending on the relative concentration of the gold NPs. Although the presence of NPs with an optimized concentration looks preferable in terms of the lasing output enhancement, such additives deteriorate the operational resource of the gain material; i.e., the photobleaching rate speeds up.

  • 12.
    Dong, Lin
    et al.
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Ye, Fei
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Hu, Jun
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Friberg, Ari T.
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Fluorescence quenching and photobleaching in Au/Rh6G nanoassemblies: impact of competition between radiative and non-radiative decay2011In: JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, ISSN 1990-2573, Vol. 6, p. 11019-Article in journal (Refereed)
    Abstract [en]

    We report the study of fluorescence quenching from nanoassemblies formed by Rhodamine 6G and gold nanoparticles (Au NPs) of 2.6 nm radius. The presence of Au NPs induces long-term degradation of the photostability (photobleaching) of Rhodamine 6G used as a gain medium in a Fabry-Perot laser cavity. We found that the degradation gets profound when the Au NPs concentration is significantly increased. Calculation of the radiative rate and direct time-resolved measurement of the fluorescence decay indicates that both the decrease of radiative decay rate and increase of non-radiative decay rate are responsible for the fluorescence quenching and photostability degradation. An energy transfer from the dye molecules to gold nanoparticles is dominating within small distance between them and suppresses the quantum efficiency of Rhodamine 6G drastically. In a long time scale, the photobleaching rate was slowing down, and the laser output intensity reached a stabilized level which depends on the gold nanoparticles concentration.

  • 13.
    Iyer, Srinivasan
    et al.
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Dong, Lin
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Friberg, Ari T.
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Physical reason behind far-field transmission resonances from U-shaped metallic structures2010In: 2010 Asia Communications and Photonics Conference and Exhibition, ACP 2010, 2010, p. 326-327Conference paper (Refereed)
    Abstract [en]

    The far-field transmission spectrum of crescent-like metallic nanostructures on a glass substrate at normal incidence is studied numerically. The interpretation of transmission resonances arising from a periodic subwavelength U-shaped metal nanostructure in terms of plasmonic eigen modes is revisited.

  • 14.
    Iyer, Srinivasan
    et al.
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Dong, Lin
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.
    Friberg, Ari T.
    KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP. Aalto University, Finland .
    Refractive index sensor performance based on enhanced transmission of light through perforated metallic films2010In: 2010 Asia Communications and Photonics Conference and Exhibition, ACP 2010, 2010, p. 328-329Conference paper (Refereed)
    Abstract [en]

    The transmission of light through a thin Au film with periodic subwavelength double nanoholes at normal incidence is analyzed numerically and compared to other conventional hole shapes. The performance of such perforated metallic films as a potential refractive index sensor is discussed.

  • 15.
    Popov, Sergei
    et al.
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics (Closed 20120101), Optics (Closed 20120101).
    Dong, Lin
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics (Closed 20120101), Optics (Closed 20120101).
    Innocenti, Nicolas
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics (Closed 20120101), Optics (Closed 20120101).
    Sergeyev, Sergey
    Waterford Institute of Technology.
    Friberg, Ari
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics (Closed 20120101), Optics (Closed 20120101).
    External near-field resonance in coupled microcavities: mode enhancement and applications2010In: 2010 Asia Communications and Photonics Conference and Exhibition, ACP 2010, 2010, p. 90-91Conference paper (Refereed)
    Abstract [en]

    Interference of the near optical field caused by evanescent waves leaking a coupled microcavity enhances the optical field between the cavity sections. This enhancement can be used for design of microcavity lasers with outside-cavity modes and for various sensors, for example, to precisely detect the direction of incident wavefront.

  • 16.
    Popov, Sergei
    et al.
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics (Closed 20120101), Optics (Closed 20120101).
    Dong, Lin
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics (Closed 20120101), Optics (Closed 20120101).
    Iyer, Srinivasan
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics (Closed 20120101), Optics (Closed 20120101).
    Sergeyev, S.
    Friberg, Ari
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics (Closed 20120101), Optics (Closed 20120101). Aalto University, Finland.
    Impact of dielectric permittivity of a substrate on the THz scattering enhanced due to near-field effect2010In: 2010 Asia Communications and Photonics Conference and Exhibition, ACP 2010, IEEE , 2010, p. 330-331Conference paper (Refereed)
    Abstract [en]

    Enhanced scattering of the THz radiation caused by the interaction of near field component with plasmons in a substrate material results in sub-wavelength resolution within THz range. Variation of dielectric permittivity of organic materials placed on a metal substrate can improve contrast of the image obtained with such a technique.

  • 17.
    Sugunan, Abhilash
    et al.
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Zhao, Yichen
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Mitra, Somak
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Dong, Lin
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Li, Shanghua
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Marcinkevicius, Saulius
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Toprak, Muhammet S.
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Synthesis of tetrahedral quasi-type-II CdSe-CdS core-shell quantum dots2011In: Nanotechnology, ISSN 0957-4484, E-ISSN 1361-6528, Vol. 22, no 42, p. 425202-Article in journal (Refereed)
    Abstract [en]

    Synthesis of colloidal nanocrystals of II-VI semiconductor materials has been refined in recent decades and their size dependent optoelectronic properties have been well established. Here we report a facile synthesis of CdSe-CdS core-shell heterostructures using a two-step hot injection process. Red-shifts in absorption and photoluminescence spectra show that the obtained quantum dots have quasi-type-II alignment of energy levels. The obtained nanocrystals have a heterostructure with a large and highly faceted tetrahedral CdS shell grown epitaxially over a spherical CdSe core. The obtained morphology as well as high resolution electron microscopy confirms that the tetrahedral shell have a zinc blende crystal structure. A phenomenological mechanism for the growth and morphology of the nanocrystals is discussed.

  • 18.
    Ye, Fei
    et al.
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Brismar, Torkel
    Shi, Jingwen
    Lin, Dong
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Sayed, Ramy El
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Optics and Photonics, Optics.
    Toprak, Muhammet
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Muhammed, Mamoun
    KTH, School of Information and Communication Technology (ICT), Material Physics, Functional Materials, FNM.
    Gold nanorod/mesoporoussilica/gadolinium oxide carbonate hydrate core/shell nanoparticles: A multimodalcontrast agent for MRI, CT and fluorescence imaging2012Manuscript (preprint) (Other academic)
  • 19.
    Zhou, Sicheng
    et al.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Dong, Lin
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Popov, Sergei
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Friberg, Ari T.
    KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Optics and Photonics, OFO.
    Radiative properties of carriers in CdSe-CdS core-shell heterostructured nanocrystals of various geometries2013In: Journal of the European Optical Society - Rapid Publications, ISSN 1990-2573, E-ISSN 1990-2573, Vol. 8, p. 13042-Article in journal (Refereed)
    Abstract [en]

    We report a model on core-shell heterostructured nanocrystals with CdSe as the core and CdS as the shell. The model is based on one-band Schrodinger equation. Three different geometries, nanodot, nanorod, and nanobone, are implemented. The carrier localization regimes with these structures are simulated, compared, and analyzed. Based on the electron and hole wave functions, the carrier overlap integral that has a great impact on stimulated emission is further investigated numerically by a novel approach. Furthermore, the relation between the nanocrystal size and electron-hole recombination energy is also examined.

1 - 19 of 19
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf