Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Varava, Anastasiia
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Path-Connectivity of the Free Space: Caging and Path Existence2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The notion of configuration space is a tool that allows to reason aboutan object’s mobility in a unified manner. The problem of verifying path non-existence can be considered as dual to path planning. The question here iswhether a body (a robot, a vehicle, or an object) can move between start andgoal configurations without colliding with obstacles. Caging is a notion fromrobotic manipulation that can be seen as a special case of this problem: anobject is caged when it cannot escape arbitrarily far from its initial position.In this thesis, we address the problems of caging and path non-existence indifferent settings. Firstly, we design a theoretical framework and verificationalgorithms for caging of three-dimensional partially-deformable objects withspecific global geometric features that can be described as narrow parts. Sec-ondly, we formulate and address the problem of herding by caging: given agroup of moving agents and a team of mobile robots, the task is to guide theagents to a predefined goal region without letting them escape at any mo-ment of time. Thirdly, we propose an algorithm for efficient approximationof three- and six-dimensional configuration spaces of arbitrary rigid objects.This approximation can be later used to identify caging configurations as wellas to verify path existence between given configurations. Finally, we reportour preliminary results on molecular caging screening. This project buildsupon our previous work on configuration space approximation.

  • 2.
    Varava, Anastasiia
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Robotics, perception and learning, RPL.
    Carvalho, J. Frederico
    Pokorny, Florian T.
    Kragic, Danica
    Caging and Path Non-Existence: a Deterministic Sampling-Based Verification Algorithm2017Conference paper (Refereed)
  • 3.
    Varava, Anastasiia
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Carvalho, J. Frederico
    Pokorny, Florian T.
    Kragic, Danica
    Free Space of Rigid Objects: Caging, Path Non-Existence, and Narrow Passage Detection2018Conference paper (Refereed)
  • 4.
    Varava, Anastasiia
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Hang, Kaiyu
    Kragic, Danica
    Pokorny, Florian T.
    Herding by Caging: a Topological Approach towards Guiding Moving Agents via Mobile Robots2017Conference paper (Refereed)
    Abstract [en]

    In this paper, we propose a solution to the problem of herding by caging: given a set of mobile robots (called herders) and a group of moving agents (called sheep), we move the latter to some predefined location in such a way that they cannot escape from the robots while moving. We model the interaction between the herders and the sheep by assuming that the former exert virtual “repulsive forces” pushing the sheep away from them. These forces induce a potential field, in which the sheep move in a way that does not increase their potential. This enables the robots to partially control the motion of the sheep. We formalize this behavior geometrically by applying the notion of caging, widely used in robotic grasping. We show that our approach is provably correct in the sense that the sheep cannot escape from the robots. We propose an RRT-based motion planning algorithm, demonstrate its probabilistic completeness, and evaluate it in simulations.

  • 5.
    Varava, Anastasiia
    et al.
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    J. Frederico, Carvalho
    Pokorny, Florian T.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Robotics, perception and learning, RPL.
    Caging and Path Non-Existence: a Deterministic Sampling-Based Verification Algorithm2017Conference paper (Refereed)
  • 6.
    Varava, Anastasiia
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Pokorny, Florian T.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Caging Grasps of Rigid and Partially Deformable 3-D Objects With Double Fork and Neck Features2016In: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 32, no 6, p. 1479-1497Article in journal (Refereed)
    Abstract [en]

    Caging provides an alternative to point-contact-based rigid grasping, relying on reasoning about the global free configuration space of an object under consideration. While substantial progress has been made toward the analysis, verification, and synthesis of cages of polygonal objects in the plane, the use of caging as a tool for manipulating general complex objects in 3-D remains challenging. In this work, we introduce the problem of caging rigid and partially deformable 3-D objects, which exhibit geometric features we call double forks and necks. Our approach is based on the linking number-a classical topological invariant, allowing us to determine sufficient conditions for caging objects with these features even in the case when the object under consideration is partially deformable under a set of neck or double fork preserving deformations. We present synthesis and verification algorithms and demonstrations of applying these algorithms to cage 3-D meshes.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf